
ON THE MULTIPLICATION OF TENSOR FIELDS

W. GREUB AND E. STAMM1

Let M be a paracompact w-dimensional manifold of class Ch+1,

T(x) the tangent space of the point xEM and T(x)* the dual space.

A real valued (PA-r)-linear function €>(x) with p arguments in P(x)

and r arguments in T(x)* is called a tensor of type (p, r) at the point

x. The tensors of type (p, r) at x form a linear space TTP(x). The prod-

ucts of two tensors4>GPp(x) and^ETat(x) is defined by

(*¥)(*; Si ■ ■ • &+,, e» • • • €*•+•)
= *(*; fc • • • fc,, i*1 ■ ■ ■ er)

•*(*; fc+i • • • fc+9, l*^1 • • • ?"+•),

6, g r(«), £** g r(*)*.

A tensor field of type (£, r) and class C on Af is an assignment of

tensors of type (p, r) to the points of M such that the components

with respect to a local coordinate system are C*-functions. The set

of all tensor fields of type (p, r) and class C is a module Tl over the

ring P of C*-functions on M. The multiplication of tensors induces a

multiplication of tensor fields in an obvious way. Now consider the

P-bilinear mapping

r a r+*

J- p s\   ■*- q      ' -* p+g

which is defined by the multiplication. This bilinear mapping induces

a P-linear mapping

h: T„ ® Tq —* Tv+9

such that

h($ ® *fr) = $•*.

We shall prove in this paper the following

Theorem, h: TTv®T'q—*TTvXSt is an isomorphism.

For the sake of simplicity we restrict ourselves to covariant tensor
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fields, i.e. tensor fields of type ip, 0) and write TP instead of Tp. How-

ever, the argument can be carried over word by word to the general

case.

Before giving the proof of the theorem we state some corollaries

and show how they can be deducted from the theorem. We are in-

debted to the referee for the suggestion to include the Corollaries 3

and 4.

Corollary 1. Let iTp)* be the dual of the F-module Tvr. Then

t   * n   * r s   *

iTp)   ® iTq)  ^ iTp ® Tq) .

Proof. There exists a canonical P-isomorphism

<rV iTrp)*->TPr.

(cf. Helgason, Differential geometry and symmetric spaces, Academic

Press, New York, 1958; p. 15). Since all maps in the diagram

iTp)   ® (r9)  -> Tr ® T,-> TT+,

H

it? *» -tA*       h     ^ rrT+,\*  ^^ +**"
iTp ® Tq)  -> iTp+q)   -> Tr+,

are isomorphisms it follows that

* —1 r+«   — 1 r •
(« )     o i<pp+q)     o ho i<bp® <pq)

is an isomorphism of (P;)*®(P,S)* onto iTp®T'/)*.

Corollary 2. The abstract pth tensorial power ® pPi is isomorphic to

Tp under h.

Proof. This follows immediately from the theorem.

Symmetric Tensors. Let 5: ®pPi—»<8>p Pi be the operator of sym-

metry defined by

5(a)1 ® ■ ■ • ® <op) = — zZ u"(1) ® ■ ■ ■ ® £o"cp)
pi   „

where a runs through all permutations of p objects. The symmetric

product Vp Pi is defined to be the P-module Im 5 C<8>p Pi. Denote

by i: Vp Pi—><8>p Pi the inclusion homomorphism. On the other hand

consider the submodule SPETP of symmetric tensors; let i': Sp —» Tp
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be the inclusion homomorphism. $ is in Sp if and only if for any per-

mutation a and any vector fields fc, • • ■ , fc we have ((r3>)(fc, • • • , fc)

=*(fc(w. • • • > fcw) =*(fc, ■ ■ •, y ■

Corollary 3. Pfee F-isomorphism h:®pTi—*Tp induces an F-

isomorphism h: Vp 7\—>5P such that h o i = i' o h.

Proof. One easily verifies that lm(hoi)=lmi'; then defines

h = i'~1 ohoi.    q.e.d.

Exterior Forms. The pth exterior power Kp Ti is the quotient F-

module <S>P Ti/N where NE®P Pi is the submodule generated by

the elements $E®P Pi such that t$=$ for some transposition r.

The operator ft of antisymmetrization is defined by

«* = — X)^-<t4>,

where a runs over all permutations of p objects and e„ is the sign of

the permutation a. Let NiE®p Pi be the kernel of ffi. According to

Bourbaki, Algebre, Chapter III, p. 60, 2e edition, we have NENi.

But on the other hand by Proposition 3 in Bourbaki, loc. cit., p. 58,

for any 4>G®P Pi and any permutation a, we have <f> — eff-(rd>GA.

Therefore

£(#-e,-«r*) G A

or £!<£-«<t>GA. Hence, if *GAi, then f£iV. Whence Ni = N.

Now let h:®p Pi—>Pp be the isomorphism of our main theorem,

■k: ® p Pi—>Ap Pi the canonical projection homomorphism and

ft': Pp—>^4„CPp the antisymmetrization map in Tp. Av consists of

the antisymmetric tensors or global £-forms.

Corollary 4. h:®pTi-^Tp induces an F-isomorphism h: A" Pi

—>AP such that h o ir = &' o h.

Proof. We have shown that Ni = N or equivalently ker ffi = ker ir

= N. It is easy to verify by computation that ho ft = G? o h. Then

&(ker 7t) =/?(ker ft) = ker &' and this proves that h exists and is an

isomorphism.

We proceed to the proof of the main theorem.

Lemma I. Let Utt be a system of coordinate neighborhoods on M such

that

Uar\Uf = 0    if a 9*0
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and Aa be a compact subset of Ua. Then there exists a system of ra tensor

fields o)lETi such that the ra tensors w^x) are linearly independent for

every xGUa Aa.

Proof. In each Ua there exists a system of ra tensor fields u/a of

order 1 in Ua such that the tensors <o„(x), (i = l • • • ra) are linearly

independent at every point xG Ua. Now let ha be a C*-function on M

such that the carrier of ha is compact and contained in U« and that

ha = 1    in Aa.

Define u/a by

> (ha&a in   Ua,
Cl>a  =    <

{  0 in M-Ua

and «• by

u{ = ]C w0-
0

Then wi is a tensor field of order 1 on M. Now let xGUa Ak be an arbi-

trary point. Since the compact sets Aa are mutually disjoint the point

x belongs to precisely one of them, say to Aa. This implies that

a>*(x) = haix)u aix) = wa(x)

i.e., the tensors w'(x) are linearly independent.

Lemma II. Consider the sets Ua and Aa given in Lemma I. Then

there exists a system of ra tensor fields a'ETi with the following prop-

erty: Every tensor field <f>ETp whose carrier is contained in Ua Aa can

be written in the form

<t> = E^i—/1 ■••«'»
(«)

where the X,,...,, are scalar functions on M whose carriers are contained

in U« Aa.

Proof. Choose a system of open sets Ba with compact closure

such that

AaEBaEB«E Ua.

Applying Lemma I to the compact sets Ba we obtain ra tensor fields

w'GP< such that the tensors w4(x) are linearly independent for every
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xGUa Ba. Hence, we can write

(1) <Z>(x) = £X,1...,,(x)a>"1(*) • • • w'"(x),        x G U Ba,
(»)

where the coefficients are C*-functions in Ua Ba. Since the carrier

of $> is contained in Ua Aa the same must be true for every function

%fl...,r. Hence, a system of C*-functions Xri..., can be defined on

If by

(hl---vp        in  U Ba,

X'1"""=  (o inM-   U Ba.
a

Then

(2) *(x) = zZ X„...,,(*)»»»(*) • • • w»f»

for every point xEM. In fact, if xGU* Ba, the relation (2) follows

from (1) and otherwise both sides of (2) are zero.

Lemma III. With Ua and Aa as in Lemma I consider any 2r tensor

fields &ETP and ^'ETP where the carriers of the $>' are contained in

\JaAa. Then the relation

(3) zZ *''•*' = 0

implies that

zZ & ® *y = 0-
i

Proof. Choose the Ba as in Lemma II and let w* be the tensor

fields constructed in Lemma II. Then $>' can be written as

*y= EC-./1 • • ■<**■>>.

It follows from (3) that

(4) EZi-^---»"* = ̂
i    00

Since the tensors co*(x) are linearly independent for every xGUa Ba

the relation (4) implies that
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(5) X) X',... ,„(*)*'(*) = 0, X E U Ba.
a

by Lemma II the carrier of X/Fl...F|( is contained in Ua Aa and hence

in Ua Ba. Thus (5) holds for every xEM, i.e.

l

Now the bilinearity of the tensor product yields

Y $y g, *i = Y ( X) Xt,...,^'1 " - ' """J ® *J
i i     \  (>•) /

= £ (a," ■ • • u» ® X Xn — ̂ J = °-
(»>   \ it

Lemma IV. Let M be a paracompact n-dimensional manifold. Then

there exists a locally finite covering by open sets V* where k — 0,1, • • ■ ,n0

(n0^n) and aE3k (3* index sets) subject to the following conditions:

(i)  V* is compact,

(ii)   F* is contained in a coordinate neighborhood,

(iii)   VlC\Vl = $ for a9*$.

Proof. Since M is a manifold, we may consider the covering { U}

consisting of all relatively compact coordinate neighborhoods. M is

paracompact and hence there is a locally-finite refinement {S} of

{ U}. As a paracompact space, M is normal; M has dimension n,

hence {S} has a refinement {R^} of order 5=w. (See C. H. Dowker,

Amer. J. Math. (1947), p. 211, together with W. Hurewicz, Dimen-

sion theory, Princeton Univ. Press, Princeton, N. J., 1941; Theorem

V8, p. 67.) Again, since M is paracompact, there is a locally finite

refinement { PF„} of {PM} with index set a subset of the former index

set and W^ERp.. For if {Zp} is a locally-finite refinement of {RA

choose u(B) such that ZpERum and put PFM = U^(S)_M Zp. Then { W^.}

is locally finite and of order «0^w. There exists a partition of unity

{d>v.} with carrier #„CWV Of course carrier </>M is compact. Given

fc+1 different indices uo, ■ ■ • , uk put a = (ua • • • m*) and consider

the sets

Fa = {x | x G M, 0„(x) < Min [<*>„„(*), ■ • ■ , <£„(*)] u 9* u0, ■ ■ ■, uk}.

Each F* is open and F*P\ V\ — 0 for a ^/3. Furthermore,

Fa C (carrier <£„„) C\ • • • C\ (carrier <£Mjt).
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Hence F* is compact and contained in some Wu. Therefore it is con-

tained in a coordinate neighborhood. Since the order of the covering

[W^\ is wo, for k>n0 the sets V* are void. The sets F* (0^&^ra0)

cover M since for every xGM some </>„(x) >0. The covering { V*\ is

locally finite since { Wy, ] is and hence it has all desired properties.

Theorem. The homomorphism h is an isomorphism onto Tp+q.

Proof. Consider the covering

"° k

(6) M = U   U Vl
k=0    a

constructed in Lemma IV. Since M is paracompact and the covering

{ F*) is locally finite we can choose an open subset W\ in each F*

such that

(7) Wa  E   Va

and

"o k

(8) U   U Wa = M.
k=0     a

It follows from (7) and the property (i) in Lemma IV that the closures

IF* are compact.

Put

IF* = U Wa        ik = 0 • • • ra)
a

and let/* be a partition of unity subordinate to the covering { IF*}.

Given an arbitrary tensor field Q,ETp+q consider the tensor fields

fl*=/*ft. The carrier of Qk is contained in IF*. Applying Lemma II

with

k _k
Ua = Va   and    Aa = Wa,

we see that Q* can be written as

(9) a = zZ W--W"1 • • • o>yr+«
00

where w'GPi and X,*...,„+,GP- Introducing the tensor fields
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iJrvp+i-.-i'p+j _ wv!i+i .   .  . ^vv+i

we obtain from (9)

0   = YXn---'P+,^n""p^"p+1'"'',+''

= hi Y ^■••w$"1"'"'' ® ^"^■■^"Y
\ c») /

Summation over PJ yields

n = h[Y 23 X^...**,*'1""'' <g> *■>«■■ ■"*+*).

This relation shows that h is an onto map.

To prove that h is one-to-one suppose that

h(Y&® *'j = °

where

$>' G Tp    and   *t' E Tq.

Then ]>3i *' "^'= 0 and multiplication by/4 yields

YfW = 0.

Since the carrier of /*$»' is contained in IF*CUa IF* we can apply

Lemma III with

Ua = F„    and    4« = Wa.

We thus obtain

X/**y® Ar' = 0
j

and summing over k

Y *y ® ̂  = o.
y

The above theorem is thereby proved.
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