
BOUNDED REGULAR SETS1

SEYMOUR GINSBURG AND EDWIN H. SPANIER

Introduction. Earlier [2] we introduced the bounded context free

languages (also called "bounded ALGOL-like languages"). (The

context free languages are good approximations to the syntactic

classes which arise in currently used programming languages.) A

most important class of context free languages is the class of regular

sets.2 Because of this it seems appropriate to consider the class of

bounded regular sets. In this note we give two characterizations of

these sets. One of these characterizations is related to a characteriza-

tion of bounded context free languages given in [3]. We also relate

certain bounded regular sets to their commutative closures.

1. Two characterizations. Let 2 be a finite nonempty set and 2* the

free semigroup with identity e generated by 2. We shall deal with sub-

sets of 2*. If A is a subset of 2*, we use A* to denote the subsemi-

group with identity (contained in 2*) generated by A. In case A

consists of a single word w, we also write w* for this subsemigroup.

A set X is said to be bounded if there exist a finite number of words

wi, ■ ■ ■ , Wk such that XQwi* ■ ■ ■ Wk*.3

We shall be concerned with bounded regular sets. In this section

we present two characterizations of bounded regular sets.

A set X is said to be commutative if xy=yx for all x, y in X.

Lemma 1.1. Let Z be the smallest family of sets which contain all

finite sets, all sets w* (w in 2*), and which is closed with respect to

finite union and finite product. Then Z contains every commutative

regular set.

Proof. Let R be a commutative regular set. By Lemma 5.2 of

[2], there exists a word w such that PCZw*. Since R is regular, the

set of integers R'= {n\wn in R} is ultimately periodic.4 Therefore
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1 The research reported in this paper was sponsored in part by the Air Force Cam-

bridge Reseach Laboratories, Office of Aerospace Research, under Contract AF

19(628)-5166, CRL-Algorithmic Languages Program.

2 For the definitions of regular set and automaton, as well as their interrelations,

see [9].

3 If Xi, ■ ■ ■ , Xk are sets of words, then Xi • ■ ■ Xk, called the product, is the set

{Xi • • • xk\ each xt in X<}.

4 In case w is a letter, this is proved in [fi]. For arbitrary w, the result follows from

the case for letters and the fact that the inverse of a homomorphism maps a regular

set to a regular set [l ].
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there exist finite sets /, / of nonnegative integers and a positive

integer k such that

R' = IKJ \j + ik\j in J, » ̂  0}.

Let F= \w' \i in /}. Then F is finite. For each j in / let Rj = w'iwk)*.

Since R = /UUy -m jRj, R is in Z.

Corollary. Z is the smallest family of sets which contains all finite

sets, all sets R*, R a commutative regular set, and which is closed with

respect to finite union and finite product.

Proof. Let Z' be the smallest family of sets which contain all

finite sets, all sets P*, R a commutative regular set, and which is

closed with respect to finite union and finite product. Clearly ZC.Z'.

To prove the converse, it suffices to show that Z contains all sets R*,

R a commutative regular set. Let R be a commutative regular set.

Then there exists a word w such that RQw*. Since P*C(w*)*=w*,

P* is a commutative regular set. By Lemma 1.1, Z contains R*.

We now derive our first characterization result.

Theorem 1.1. R is a bounded regular set if and only if R is in the

family Z of Lemma 1.1.

Proof. Obviously every set in Z is regular. By Theorem 3.1 of

[2], every set in Z is also bounded. Thus each set in Z is bounded

regular.

To see the converse, let R be a bounded regular set. Then, since R

is regular, there exists a finite sequence Xi, • ■ ■ ,Xm of families of

sets such that

(1) Xi is a finite collection of finite sets.

(2) P is in Xm.

(3) For 2gi^wt, Xt is obtained by adjoining to Xt-i a set At

which is either the union or the product of two sets in Xt-i, or is E*

ior some set E in X,-i. For each i let F, be the collection of bounded

sets in X,. Then Fi = Xi. Since P is bounded, R is in Yn.

Consider F,-, 2^i^m. It is clear that either Fi=Fj_i or

F< = Yi-i*U{Ai}. If A, is not bounded, then F<= F<_i. If Ai is
bounded, then either Ai = B/JB2 or A, = BiB2 or Ai = Bz* for Pi, P»

(or B/) in X.-i. In the first two cases, both Pi and B2 must be

bounded, thus in F,_i. In the last case, since Ai is bounded, it follows

from Lemma 5.3 of [2] that P3 is commutative. In any case, either

F<= F,_i or Yi is obtained from F,_i by adjoining a set Af which is

either the union or the product of two sets in F,_i or is C* for some
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commutative regular set C in F,_i. Thus R is in Z by the corollary

of Lemma 1.1.

Corollary. R is bounded regular if and only if R is in the smallest

family of sets containing all regular subsets of w*, w in 2*, and closed

with respect to finite union and finite product.

Proof. Let W be the smallest family of sets containing all regular

subsets of w*, w in 2*, and closed with respect to finite union and

finite product. Then W contains Z of Lemma 1.1. Since each set in W

is also bounded regular, W = Z.

We now derive our second characterization of bounded regular

sets.

Lemma 1.2. Let 2= {ai, ■ ■ ■ , an}. A subset X of oi* ■ • • an* is

regular if and only if it is a finite union of sets of the form

(1) Ai • • • An,

where each A,- is a regular subset of a**.

Proof. If X is such a finite union, it is clearly regular. We prove

the converse. Since multiplication is distributive with respect to

union, it follows from the previous corollary that each bounded

regular set is a finite union of sets of the form

(2) Pi • • • Bm,
where each P4 is a regular subset of Wi* for some Wi in 2*. Thus any

regular subset of Oi* • • • a„* is a finite union of sets of the form (2).

Obviously each corresponding word Wi is either a power of some a,

or is a product a,-, • • • aik, with ii^i2^ • ■ ■ ^ik. Thus each set of

the form (2) can be written as

(3) & ■ ■ • C„
where each d is a regular subset of a*() for some/(i), 1 ̂ f(i) ^n. For

each i, l^i^n, let

(4)     Ai=Cil    ■    ■    ■    Cig(i),
the dj being just those Ck which are subsets of a*. Let At= {e} if

there is no i such that dQa*. Then

(5) Ai ■ ■ -An = Ci ■ • • C„
so that X has the prescribed form.

Using the language of [3], in particular, the notion of a linear set,

we can reinterpret the lemma as follows.

Corollary. Let 2= {ai, ■ • • , a„). Then PCai* • • • a„* is regular

if and only if {(i(l), • • • ,i(n))\aiim • ■ ■ ani(n) in R} is a finite union of

linear sets Lk, each period in each Lk having at most one nonzero co-

ordinate.
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Using the lemma we now prove

Theorem 1.2. A subset X ofw/" ■ • ■ w* is regular if and only if it is

a finite union of sets of the form Xi ■ ■ ■ Xr, where each Xi is a regular

subset of w*.

Proof. Let bi, ■ • ■ , brhe r distinct symbols not in 2. Let h be the

homomorphism which maps each &,■ into Wi. Since the inverse of a

homomorphism maps a regular set to a regular set [l], h~1iX) is

regular. Thus F = /i_1(X)n&i* • • • br* is regular. Clearly

,    id) <(r)|     .(1) i(r)   . >

Y = \bi     ■ ■ ■ br    \Wi     • • ■ wr     inAJ,

By Lemma 1.2, Fis a finite union of sets of the form Fi • • • Fr, each

Yi a regular subset of b*. Then X = hi Y) is a finite union of sets of

the form A(Fi) • • • A(Fr), each fe(F,) a regular subset of wt*.

From the corollary to Lemma 1.2 and the fact that

f    HU ,*» I     id) i(r)  . >
Y = \bi     ■ • • br    \Wi     ■ ■ ■ wr     in A j

is regular we get the following which is related to Theorem 2.1 of [3].

Theorem 1.3. Let XQw/* • • • w* each Wi in 2*. A necessary and

sufficient condition that X be regular is that

{(i(l), • • • , iir)) \w\     ■ ■ ■ wlr in X\

be a finite union of linear sets Lk, each period in each Lk having at most

one nonzero coordinate.

2. Commutative closure. We now give a condition for a subset X

of Oi* ■ ■ • Un*, the Oj being distinct symbols, to be regular in terms of

the "commutative closure" of X.

Definition. The commutative closure c(A") of XC//Z* is the set of

all words xi • • • xk, each x,- in S, such that for some permutation t of

{l, • • • , k\ the word xT(i) • • -xT(k) is in X. (c(A) contains e if and

only if X contains e.)

In general, X may be regular without c(X) being regular. For ex-

ample, let 2={fl, b}. Then X = iab)* is regular but c(X) is not

regular. For if c(X) were regular, then ciX)C\a*b*= [anbn |ra^0}

would be regular, a contradiction.

Theorem 2.1. Let 2= |o, |l ^i^n} and X a subset of a/* • • • an*.

Then X is regular if and only if ciX) is regular.

Proof.   Suppose   c(X) is regular. Then X = a/* • • -an* C\ c(A').
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Since the intersection of regular sets is regular, X is regular.

Suppose X is regular. By Lemma 1.2, X is a finite union of sets of

the form Xi • • • Xn, where each Xi is a regular subset of a?. It thus

suffices to prove that if X is of the form Xi • • • Xn, each Xt a regular

subset of a%*, then c(X) is regular. For each i, let A t = (Kit 2, Sit si0, Ft)

be an automaton such that T(AA=Xi. Let A be the automaton

(K, 2, 5, so, P), where K = KiX • • ■ XX», s0 = (si0, • • • , s„0),

F=FioX ■ ■ -XP„o, and

5((5i, • • • , 5„), a») = (ji, • • • , Si-i, 8i(si, a^, si+i, ■ ■ • , s„).

It is readily seen that a word to in 2* is in T(A) if and only if, for each

i, a1i(-w) is in T(AA where hi(w) is the number of occurrences of a; in w.

Therefore T(A) =c(X), so that c(X) is regular.

Note that Theorem 2.1 does not state that the commutative closure

of a bounded regular set is regular. In fact, the example prior to

Theorem 2.1 furnishes a bounded regular set whose commutative

closure is not regular.

3. Decidability. We now consider the problem of deciding whether

a given set is a bounded regular set. It follows from Theorem 5.2 of

[2] that it is decidable whether or not a given regular set is bounded.

We show that it is decidable of a given semilinear6 subset L of Nn

whether t~x(L) is regular (where r is the function which maps a word

oi'i • ■ ■ a'n" of fli* • • • an* into the n-tuple (ii, • • •, in) of Nn). In view

of Theorem 2.1, this is equivalent to the condition that c(t~1(L)) is

regular.

We first obtain a necessary and sufficient condition on L for

c(t_1(P)) to be regular. For this we introduce the following relation on

elements of Nn.

Notation. Let L be a subset of Nn. For x, x' in Nn, write x = L x'

if, for all u in Nn,

x + u is in L if and only if x' + u is in L.

Clearly = L is an equivalence relation.

Lemma 3.1. Let Lbe a subset of Nn. Then c(r~l(L)) is regular if and

only if there are a finite number of equivalence classes generated by the

equivalence relation = L.

Proof. Let X = c(t~1(L)). Now X is regular if and only if there are

a finite number of equivalence classes of 2* generated by the follow-

ing equivalence relation ~x: w ~x w' ii and only if, for all words

6 The reader is referred to [3 ] for the notation and concepts used in this section.
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w" in 2*, ww" is in X if and only if w'w" is in X [9]. Since X is the

commutative closure of r~liL) it follows that if w is any word in 2*

and w' is an arbitrary permutation of w, then w ~x w'. Therefore

every equivalence class has a representative which is a word in

oi* • • • o„*. Thus X is regular if and only if there are a finite number

of equivalence classes of ai* ■ ■ ■ a* generated by <~x.

To complete the proof we verify that for w and w' in ai* ■ • • an*,

w r^,x w' if anfj only if t(w) = L riw'). Let w and w' be in ai* ■ • ■ an*.

Suppose w ~x w'. Let u be an arbitrary element of Nn and y in t_1(m).

Then t(w)+m is in L if and only if some permutation of wy is in

T~liL), and t(w')+m is in L if and only if some permutation of w'y

is in T~liL). Therefore t(w) +w (or riw') +u) is in L if and only if wy

(or w'y) is in X. Thus r(w) =Lriw'). Conversely, suppose

r(w) =■L t(w'). Then for each element y in ai* • • • an*, wy is in A" if

and only if w'y is in X. Ii z is an arbitrary element of 2*, then some

permutation of z is an element y in a* ■ • ■ an*. Since A" is a commuta-

tive closure, wz (or w'z) is in X if and only if wy (or w'y) is in X.

Therefore w ~x w' and the proof is complete.

Corollary. It is decidable to determine for an arbitrary semilinear

set L in Nn whether cir~liL)) is regular.

Proof. We use a method found in [5]. By Theorem 1.3 of [3],

a Presburger formula P(xi, • • • , x„) over the nonnegative integers

can be effectively found such that L = {(xi, • • • , x„) in Nn |

P(xi, •••,*») is true}. Let Q be the following Presburger sentence:

(3£)(*i) • • • (x„) (3*0 • • ■ (3x„')

[" A (*«' ̂  k) A (yi) • • ■ (y»)(P(x, + yi, •••,*» + y»)
L,_i

= P(xi' + yi, • • • , x„' + yre))   .

Then Q is true if and only if there are a finite number of equivalence

classes of Nn generated by =L. By Lemma 3.1, this is equivalent to

the condition that cir_1iL))  is regular. Since the truth of every

Presburger sentence is decidable [4], the corollary holds.

We now obtain the following result also due to [5] and [8].

Theorem 3.1. It is decidable to determine for an arbitrary regular set

R whether ciR) is regular.
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Proof. Let PC2* be regular and ^ the Parikh mapping of 2* into

R. Then L=\p(R) is semilinear [7]. Since c(R) =c(t~1(L)), the result

follows from the preceding corollary.
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