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1. The familiar finite-area principle of Fejer asserts that if the

image of \z\ < 1 under the analytic mapping w =f(z) = J2" anzn is of

finite area (counting multiplicities), then YanZ" converges a.e. on

\z\ =1 and uniformly on closed arcs of continuity. This result was

localized by Zygmund [3] and by Lusin [l] who considered the

image of a region bounded by a simple Jordan arc in \z\ < 1 and an

arc a^d^B of \z\ =1. They showed that if an — o(l) then the con-

clusions of the Fejer theorem hold relative to the arc [a, B] and, for

aH = o(nk), k> — 1, convergence can be replaced by (C, k) summabil-

ity. It should be noted that the Tauberian conditions in this result

are necessary in order that there be a point of convergence (or

(C, k) summability) on \z\ —1.

The result we will establish is a localized finite area theorem for

functions analytic in a half-plane.

Theorem. Letf(s) =fo e~axdy(x), where s=o-Arir, be analytic in the

half-plane cr>0. Suppose that

(A0) ct(x) =   sup    | y(x Ar h) — y(x) |  = o(l).
og»gi

Let Q,be a region in a>0 bounded by a segment [ia, iB] of o* = 0 and a

I or dan arc. If

J     Jlf'^dadr <   oo,

Then fo e~"xdy(x) converges a.e. on the segment (ia, iB) and uniformly

on any closed subsegment of continuity. If (A0) is replaced by

(A*) a(x) = o(xk),       k>0,

then convergence is replaced by (C, k) summability in the conclusion.

It should be noted that (A0) is a necessary condition for conver-

gence of the integral at one point of r/ = 0, but (Ai), contrary to [5,

p. 335] is not necessary for (C, k) summability. A counterexample

is given in §3.
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2. We turn now to the proof of the theorem. We consider only the

case of (C, k) summability. Clearly there will be no loss of generality

if we assume that 7(x) =0 for 0^x<5 and that 0<a<j3<2ir.

Let 71 and 72 be the odd and even extensions of 0*1(7) ar>d £(7)

to (— 00, co). Set<p = iyi+iy2)/2 andZ= —t. Proceeding formally we

have

/100 /»00 /»03
e~iTXdyix) =   I    eitx d<t>ix) + i j    ei,xi—i sign x) d<j>ix).

0 J -00 J -X,

Clearly <p satisfies condition (A*) and, by an integration by parts, it

may be seen that

Hx) = I   yd<j>iy)
J 0

satisfies condition (At+i).

Let h and p denote positive integers which will be chosen as large as

is needed. We define

/X /» Xiiy)-hd<t>iy),       *,,(x) = J    iiy)~h d+iy)

and

/oo f* 00

eitxd<S>h-iix),        F*il) =   I    eilxdVhix).

Clearly *,,= -i$h-i and so F*it) = -iFit).

Let X(Z) be a function of period 27r and in class Cp such that

X(Z) = 1    for a ^ Z g p\

= 0    for 0 < Z < o < a    and    ,8 < b < t < 2ir.

Let us now consider the formal hth derivative of the Fourier series

of P*X, S"»(P*X) = zZ-nW1 with fSn = oin"+l). Clearly S(/"X)
= — tS(P*X) and so

w

S(»-1)(/?X)   =   J] &„e*»<
—00

with &„ = o(rafc) and /?,,= — nbn- Let

00 00 00

?(2) = zZ 6„r|n|e*'n' + i zZ (—* sign n)bnrMeint = X) <"»2"
—co —oc 0

where cn = 2bni z = reil. Then
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00 00 00

Y nbnrMeint + i Y (~i sign n)nbnr^eint = Y 2bnnz" = zg'(z).

—oo —oo 0

Applying the method employed by Zygmund in [4, Theorem 9] to

the function x// we see that, as a>—> co f the differences

xeitxd<p(x) —   Y Bneint

—iii l»|gw

I    xeitx(—i sign x) d<l>(%) —   ^ 0n(—isignn)eint

** —cj [n| so)

are uniformly (C, k + \) summable in [ay /?], the first difference to

zero and the second to a finite value.

We observe now that

/CO

e-«\x\eitx\ x\ d<t>(x);
-00

/OO

e-"^ei,xixd<b(x).
-OO

Since the uniform Cesa.ro summability implies uniform Abel summa-

bility we have

00

i$(f'(s)) - Y nbneintrn -► 0,
— x

CC

i(R(f'(s)) — Y nbn(i sign w)e""r|n| —> finite value
—oo

uniformly on [a, B] as a= —log r—>0 + . Hence for some e>0 there

is an M>0 such that

\f'(s)\*A-M^  \zg'(z)\*> l/2|g'(z)|2

for a^t^B and 0<o-= —log r<e.

Thus there exists an AP>0 and a region Q' in \z\ <1 bounded by

the arca^t^B of 121 =1 and a simple Jordan arc in \z\ < 1 such that

f    f| g'(z) K** ^ M' A-2 j    f\ f'(s) \2dadr < oo.

Since cn — o(nk), the localized finite area theorem of Zygmund is ap-

plicable. Thus 5Zo° bneint is (C, k) summable a.e. on (a, 8) and uni-

formly on closed subarcs of continuity. This implies the same for

Y-~ bneint and Y-~ (~i s[Sn n)b„eint.
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If we now apply the method of Zygmund to the function <b satisfy-

ing condition (At) we find that the differences

/a eitxd<(>(x) -   X)  bneint,

eitxii sign x) d<Z>(x) —   zZ bnii sign n)eint

are uniformly summable (C, k) in [a, [3], the first to zero and the

second to a finite value. The summability properties of the integrals

are then the same as those of the series, which establishes the theorem.

3. Consider now the function

yix) =0      ifra^x^ra+1- 1/2",

= 2"    if n + I - 1/2" < x < ra + 1

for ra = 0, 1, 2, • • • . Then

/» oo /» u     n u

(C, 1) dy(x) = lim (1/co)  I      I     dy(x) du
Jo Jo   J 0

= lim (1/co)   I    y(ra) dra = 1
•^ o

since
/• OI

[co] ̂    I    y(ra) dra ̂  [co] + 1.
Jo

But

sup   | t(x + h) — yix) |   = 2'*" j= o(x).

Hence /rj0 e_,:rd7(x) is (C, 1) summable at s = 0, but 7(x) does not

satisfy condition (Ai) contrary to [5, p. 335].

References

1. N. Lusin, On the localization of the principle of finite area, Dokl. Akad. Nauk

SSSR 56 (1947), 447-450.

2. F. Wolf, Contributions to the theory of summable trigonometric integrals, Univ.

California Publ. Math. 1 (1947), 159-227.
3. A. Zygmund, Sur un theoreme de M. Fejir, Bull. Seminaire Math. Univ. Wilno

2 (1939), 3-12.

4. -, On trigonometric integrals, Ann of Math. 48 (1947), 393-440.

5. -, Trigonometric series, Vol. II, 2nd ed., Cambridge Univ. Press, New

York, 1959.

Wayne State University


