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1. Introduction.

1.1. Let {X„} be an arbitrary increasing sequence of positive num-

bers, such that

0 < Xo < Xi < X2 < ■ • • < X„_i < X„ —» oo,    as    w —> oo,

and Yn-o ffl» a given series.

We write

An = ao A- ai + a2 + ■ • • + o„_i + an,    4x(co) = 0,    for a> g h,

where h is a convenient positive number.

If w>0, X„<w<X„+i then

n

4x(w) =  An =  Y a* =   X a»
r=0 X„<u

and for fe>0

k fc

X„<o>

= k f   (« - O*-1^) * =   f   (» - t)kdAx(l).

We define ^4°(w) =^4x(w). We also define

_fc fc_i
A\(u) =   Y (w — ̂ -)     Xno„ (k > 0)

K<<»

= -  f   4X(0 — [(« - f)*"1*] A       (A > 1)
J 0 ^

=    f    (« - t)k-HdAy,(t) (k^l).
J 0

We have
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k

d /A\io/)\ k    _&»•» =(-5-0-^^
We use Pj(a>), jB*(w) and Cf(co), Cf(w) for similar expressions in-

volving zZn-o °n and zZn=o cn respectively.

1.2. If we associate summability by Riesz means of type X with

the series zZn-o a» and type M with zZn-o °n, we may form the se-

quence of numbers vn, which are numbers ~\p+pq arranged in increas-

ing order of magnitude, and associate summability by Riesz means

of type v with the series zZn-o cn, where

c„ =     Zu    apbq.

Then we call zZn-o c» the Dirichlet product of zZn-o a« and zZn-o °n-

If X„=ju„ = ra, then the rule reduces to Cauchy's.

2. Definitions. The series zZn-o an is said to be summable (P, X, k),

where k ̂  0, to the sum 5 if

Um Alia)/J = 5        (cf. [3]).
a—* oo

If, in addition,

/' -1     d /Aliu)\ \ '
\ur[-^r)\ du = oi*),

h  \    du\   u"   /1

as w—><*>, then the series zZn-o a„ is said to be summable [R, X, k, r]

to the sum s, (fe>0, r^l, k> l/r'), where r' denotes the number con-

jugate to r, i.e. r' = r/ir — l) [5]. We define r' to be <*> if r = l.

For the definition to be valid at all, the condition k>l/r' is essen-

tial as pointed out by Boyd and Hyslop [2, pp. 94-95].

When r = 1, [R, X, k] and [R, X, k, r] denote the same method. Now

[R, X, 0] summability is equivalent to convergence and

I    x\dA\ix)\   = oiX),    as    X —» ».
J h

The above condition is the same as

zZ  I an\n I   = oiX)
\„<x

[S]. We observe that on account of (1.1) the condition (2.1) is equiv-

alent to
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Cx\aI(u)  t
(2.2) I      -    du = o(X),    as    X->«>.

J h   \    uk

Again, since h>0 and A\(u) is integrable (L) in the range (h, X) for

every finite X>h, the condition (2.2) is equivalent to

/> x | ll(u) \Tdu = o(Xkr+1),    as    X^ oo     [5].

The assertion that the series Yn-o a» is summable \R, X, 0| to s

means that  / ,-TLn an = s (in the usual sense) and y,r,n \an\ < °° •

It has been shown by Srivastava [5, p. 68, Theorem 9 and p. 61,

Theorem l] that, for k^O, summability | R, X, k\ implies summabil-

ity [R, X, k] and so also summability (R, X, k).

3. The following theorems are known.

Theorem 1. // 2^°_0 an is summable (R, X, k) to sum s, k^O, and

Yn=o bn is summable (R, p., I) to sum t, then Yn=o °n is summable

(R, v, kA-lA-l) to sum st, (1^0).

Theorem 2. // ^^=0 a» ** summable [R, X, k], k>0, to sum s and

Yn=o bn is summable (R, u, I) to sum t, then the series Yn-o c» is sum-

mable (R, v, k-\-l) to sum st.

Theorem 3. // Yn-o an is summable [C, k], where k>0, to s and

Yn=obn is summable \C, 0\ to t, then Yn-o (a°bnA-aib„-iAr ■ • •

A-anbo) is summable [C, k] to st.

Theorems 1 and 2 are due to Chandrasekharan and Minakshisun-

daram [3, p. 100, Corollary 3.91 and p. 106, Theorem 3.96]. Theorem 3

has recently been obtained by A. V. Boyd [l]. We obtain in Theorem

A the analogue of Theorem 3 for the Dirichlet product. Theorem B

is concerned with summability [R, X, k, r] instead of summability

[R, X, k}.
We shall prove the following theorems.

Theorem A. // Yn=oan is summable [R, X, k], where k>0, to s

and Yn°-obn is summable \R, u, 0\ to t, then Yn=o c* is summable

[R, v, k] to sum st.

Theorem B. // X^T=o fl« ̂ s summable [R, X, k, r], where k>l/r' and

r>l, to s and Yn=o bn is summable \R, u, 0\ to t, then 5^T=0 cn is

summable [R, v, k, r] to st.

We observe that Theorem B reduces to Theorem A when r = l. It
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may be mentioned that Theorem A of the present paper includes as a

particular case a theorem of Boyd [l] for strong Cesaro summability

on account of equivalence of summabilities [P, ra, k] and [C, k] [2].

I am grateful to Dr. (Mrs.) Sulaxana K. Gupta and Dr. Pramila

Srivastava for their kind suggestions during the preparation of this

paper. I am also indebted to the referee for valuable suggestions ac-

cording to which I have modified my paper.

4. We require the following lemma.

Lemma. Suppose that 1 ̂  r < oo and k>0. Then, if the series zZn-o a«

is summable (P, X, a) for some a > 0 to the sum s, and

/< x | A\iu) | du = o(X     ),    as    X —* <x>,
h

then it is summable [P, X, k, r] to the sum s.

This result is analogous to Flett's Theorem 7 [4] on strong Cesaro

summability. The lemma follows by combining Corollaries 1 and 2

to Theorem 8 of Srivastava [5, p. 66].

5. It is convenient first to prove Theorem B.

Under the hypothesis of the theorem, zZn=o an is summable

(P, X, k) to the sum s and zZn-o °n is summable (P, p., 0) to the sum Z.

Applying Theorem 1, we deduce summability (P, v, k + l) of yjT-n c„

to the sum st. Hence by the lemma it is sufficient to prove that

/. x | ct(«) \'du = oiXhr+),    as    X -> oo.
h

For w^Xp+Mo,

C„(w) =     zZ    (co — Xp — p^'^Xp + nq)apbq
\p+Hq<a

=  zZ mA    zZ    (" — XP — uq)k~lap
Iiq<i0 \p+fiQ<Ui

+    ZZ   °q       ZZ       ("  — Xp — HqY^Xpap
««<<» Xj,+(1j<GJ

1        k
=    ZZ  P-ibq--"  Axiw  - pq)

Vq<<l (w — Ms)

+    ZZ  P-tbq---  A^W  ~ Pq)   +    ZZ   bqAxi<4 — Pq)
Hq<a (<0 — Pq) M4<«

=  Pi(co) + P2(W) + />,(«),
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say. Hence, by Minkowski's inequality, it is enough to prove that, if

P(w) is any one of Pi(o>), P2(oj), P3(u>), then

(5.2) I     | P(w)\rdu = o(Xkr+l),    as    X-> oo.
J h

We observe that

iwr- z{^)1/r^(--^}x{(^)i/r'nr.

Applying Holder's inequality for sums with indices r and r'( we have

(5.3) \p»{»)\r* \y i*9ii3j(«-M,)r} {y \bq\Y'r.

We have, since 2»-o &* *s summable | R, /*, 0|,

i p3(co) r ^ m y k i i 2*(co - M9) r

where M is a constant.

Hence

f    | P,(w) |' do> g M f    Y  \bq\\ Al(w - pq)\'du.
J h J h     iiqKu,

Interchanging the order of integration and summation, we get

f    | P3(co) \rdw ̂ M Y   I bq I    f    I Ix(co - pq) I *do>
-I h nq<X " JI,

= M Y  \bq\ o(Xkr+l)
Hq<X

= o(Xkr+1),

by virtue of the hypothesis.

We further observe that

k

I PiM T =    E   {(-"A)1"     .      " ? }  X { W,)1'"} I '•
M,<<0     l (<>>  —  Hi,)     > J   \

Applying Holder's inequality for sums with indices r and r', we have
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(5.4) l%<„ (cO   -   Hq)r        )       i„q<u )

,     ,vr i    .  i   I A^ ~ **«) I= o(a>r-1) 2^   I mA |-
(.,<« («  —   PqV

Hence, by using Theorem 1 of Srivastava [5] and the hypothesis of

the theorem,

/i        k if«x fx \ A\(a)_u )\
i Pi(«) r &» = e i mai   "(co-1) j—-—^-du

h nq<X J*q (w - M«)r

g O^1) I   \pA\    f   oil)iw - pq)'"*-" dw

= o(X-') £  I pqbq I o(X'<»-1>+1)

= oiX'-WX'i*-1*1) zZ UaI

= o(X*'+1),

provided £>l/r'.

Similarly we can prove that

f   | P2(o>) \r do> = oiXkr+l),    as    X -» oo.
•'A

Thus collecting our results, we have

/       i    _fr i r £r+1| C,(co) I dw = o(X     ),    as    X —> oo .

This completes the proof of Theorem B.

6. Proof of Theorem A. The proof of this theorem follows immedi-

ately from Theorem B by omitting the last factors in (5.3) and (5.4).
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ON HYPONORMAL OPERATORS

I. H. SHETH

1. An operator T defined on a Hilbert space H is said to be hypo-

normal if T*T—TT*^0, or equivalently if || T*x\\ :S|| Tx\\ for every

xEH. An operator T is said to be seminormal if either T or T* is

hyponormal. If T is hyponormal, then T—zI is also hyponormal for

all complex values of z.

The spectrum of an operator T, in symbols a(T), is the set of all

those complex numbers z for which T — zI is not invertible. A complex

number z is said to be an approximate proper value for the operator

Pin case there exists a sequence xn such that ||x„|| = 1 and || (T — zI)xn\\

—>0. The approximate point spectrum of an operator T, in symbols

II(P), is the set of approximate proper values of T. The numerical

range of an operator P, denoted by W(T), is the set defined by the

relation

W(T) = {(r*,*): ||*|| = l}.

CI (W(T)) will, as usual, denote the closure of W(T). An operator S

is said to be similar to an operator P in case there exists an invertible

operator A such that 5 = A ~l TA.

In this note, all the operators will relate to a Hilbert space H.

We shall prove the following theorem.

Theorem. Let N be a hyponormal operator. If for an arbitrary op-

erator A, for which O^Cl (W(A)), AN = N*A, then N is self-adjoint.
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