TWO THEOREMS ON GALOIS COHOMOLOGY!
MICHAEL ROSEN

1. Introduction. Let k and K be algebraic number fields, K a finite
extension of k with Galois group G. H. Yokoi has considered the ring
of integers Ok in K as a Z[G] module (see [2]). In particular, he has
proven

THEOREM. If both K and k are Galois over the rationals Q, and G s
cyclic of prime order, then H™(G, Ox) =~ H*(G, Ok) for all integers m
and n.

We will prove a generalization of this. Namely

TueoREM 1. If G is a cyclic group, then ord H™(G, Og) =ord H*(G, Ox)
for all integers m and n.

Notice that we have dropped the hypothesis that both 2 and K
be Galois over the rationals.

To see how Theorem 1 generalizes Yokoi’s result, remember that if
G has prime order p, then multiplication by p annihilates all the
cohomology groups. Thus in this case the cohomology groups are
determined up to isomorphism by their order.

The technique used to prove Theorem 1 can be used to prove other
results of a similar nature. In the same situation as above let us con-
sider Uk, the units of K, as a Z[G] module. Then we have

THEOREM 2. Let G be a cyclic group, and suppose that no infinite
prime of k is ramified in K. If ord G=mn, then n ord H*(G, Uk)
=ord H*+Y(G, Ux) for all integers r and s.

The hypothesis about no infinite prime ramifying is satisfied, for
example, when K is totally real or when # is odd.

2. Proofs of the theorems. The proofs of both theorems are easy
consequences of the following lemma which is a direct generalization
of a result of Chevalley in Herbrand quotients (see [1]). It has come
to my attention that this generalization has been discovered inde-
pendently by Dr. J. Smith of Michigan University.

We need some notation. From now on G will be a cyclic group of
order #, ¢ a generator of G, and when d]n, G(d) will be the unique

Received by the editors October 18, 1965 and, in revised form, March 24, 1966.

! This paper was written when the author held an O.N.R. Research Associateship
(O.N.R. 432).

1183



1184 MICHAEL ROSEN [October

subgroup of G having order d. K(d) will be the cyclotomic field of
dth roots of unity, O(d) the ring of integers in K(d), and {(d) a prim-
itive dth root of unity.

When d is a prime power, pi, (1—{(d)) is a prime ideal in O(d),
whose residue class field has p elements. On the other hand, when d
is composite 1 —¢(d) is a unit. This is seen as follows. Let d=p1p.q,
where p; and p, are distinct primes. Notice that {(d)n?={(ps) and
¢(@)ne={(p1). This shows that 1—{(d) divides both 1—{(p1) and
1—{(ps). Taking absolute norms, we see that the norm of 1—{(d)
divides both p; and p,. Thus the norm of 1—{(d) is a unit, and con-
sequently 1 —{(d) is a unit.

Let A be a finitely generated Z[G] module. The Herbrand quo-
tient, ¢(4), is defined to be the ratio of ord H*(G, 4) to ord H'(G, A4).

Let A 6@ be the subset of A left fixed by G(d), and define 7(d) to
be the Z rank of 4 6@,

LEMMA. Let n= ][], p*® be the prime decomposition of n. Then
q(A) = 11 p*® where
t(p)

s(p) = t(p)r(n) — Z‘; SN (r(n/p?) — r(n/p*).

Proor. Notice to begin with that Q[G] =Q[x]/(x»—1) where x is
an indeterminate. We have x*—1= []4. ®a(x) where ®4(x) is the
cyclotomic polynomial of dth roots of unity. Consequently, Q[G]
~ Y a1» K(d). Each K(d) becomes an irreducible Q[G] module, where
g acts as multiplication by {(d).

Consider V=0®A4. Vis a Q[G] module. Thus V= Y 4. a(d)K(d)
where the a(d) are certain nonnegative integers. We easily deduce
the existence of a Z[G] submodule B of 4 such that 4/B is finite, and
B= > a1, a(d)0(d). From the well known properties of the Herbrand
quotient we have

g(4) = ¢(B) = }:I g(0(d))*®.

We now compute ¢(0(d)). For d=1, O(d)=Z acted on trivially
by G. Let N= > "=} ¢i. Then HG, Z)=Z/NZ=Z/nZ. Since G is
cyclic H(G, Z)=~H\G, Z)=Zy/(1—0)Z=(0). Thus ¢(0(1)) =n.

For d#1 we have O(d)%= (o) since ¢ acts as multiplication by
¢(d). Therefore ord H*(G, O(d))=1. On the other hand, O(d)x
= {a € 0(d)| Na = o} = 0(d),and (1 — 0)0O(d) = (1 — {(d)). Thus
H\(G, 0(d)) =H-Y(G, 0(d)) =0(d)/(1 —¢(d)). The remarks preceding
this lemma now show that g(0O(d)) =1 if d is composite and ¢(0(d))
=p~1if d=p%is a prime power.
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Putting together the information we now have, we get that ¢(4)
= [Is1n p*® where

t(p)
s(p) = t(p)a(1) — Zl a(p).-

To relate the a(d) with the 7(d) notice that the Z rank of A% is
equal to the Q dimension of V@, The group G(n/p?) is generated
by o¢7. From the way that o acts it follows that V@/»)
=Dt oa(p)K(p?). Therefore, r(n/p) =2 iy d(pa(p?). Solving
for a(p?) we get that a(p®) = (p?)~(r(n/p?) —r(n/pi~*)). This com-
pletes the proof.

ProoF oF THEOREM 1. Since G is cyclic the cohomology groups are
periodic of order 2. It is thus sufficient to show that ¢(Ogx)=1. If
[K:0]=N, then the Z rank of O§f?=N/d. Substituting this in-
formation into the formula of the lemma we see that, indeed, ¢(Ox)
=1,

CoRrOLLARY. If G is cyclic of square free order them H™(G, Ok)
=~ H™(G, Oxk) for all integers m and n.

Proor. The restriction map gives a monomorphism of the p-
primary component of Hi(G, Ox) into H¥(G(p), Ok). It follows that
the p-primary components of the cohomology groups under consider-
ation are elementary. These groups are thus determined up to iso-
morphism by their order.

ProoF oF THEOREM 2. Let K be an algebraic number field. Denote
by 71(K) the number of real primes of K, and by r:(K) one half the
number of complex primes. The Dirichlet Unit Theorem states that
rank (Ug) =ri(K)+r(K)—1. If k is a subfield of K, the condition
that no infinite prime ramify in K means that the extension of every
real place is real. This implies rank (Ux) = [K:k] rank (Uy)+[K:k]
—1. Using the notation of the lemma, with 4 = Ug, we have r(1)
=dr(d)+d—1. Substituting this into the formula of the lemma we
get s(p) = —t(p) and thus ¢(Ug) =n—'. This finishes the proof.
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