TWO THEOREMS ON GALOIS COHOMOLOGY1

MICHAEL ROSEN

1. Introduction. Let k and K be algebraic number fields, K a finite extension of k with Galois group G. H. Yokoi has considered the ring of integers O_K in K as a Z[G] module (see [2]). In particular, he has proven

THEOREM. If both K and k are Galois over the rationals Q, and G is cyclic of prime order, then $H^m(G, O_K) \approx H^n(G, O_K)$ for all integers m and n.

We will prove a generalization of this. Namely

THEOREM 1. If G is a cyclic group, then ord $H^m(G, O_K) = \text{ord } H^n(G, O_K)$ for all integers m and n.

Notice that we have dropped the hypothesis that both k and K be Galois over the rationals.

To see how Theorem 1 generalizes Yokoi's result, remember that if G has prime order p, then multiplication by p annihilates all the cohomology groups. Thus in this case the cohomology groups are determined up to isomorphism by their order.

The technique used to prove Theorem 1 can be used to prove other results of a similar nature. In the same situation as above let us consider U_K , the units of K, as a Z[G] module. Then we have

THEOREM 2. Let G be a cyclic group, and suppose that no infinite prime of k is ramified in K. If ord G=n, then n ord $H^{2r}(G, U_K)$ = ord $H^{2s+1}(G, U_K)$ for all integers r and s.

The hypothesis about no infinite prime ramifying is satisfied, for example, when K is totally real or when n is odd.

2. Proofs of the theorems. The proofs of both theorems are easy consequences of the following lemma which is a direct generalization of a result of Chevalley in Herbrand quotients (see [1]). It has come to my attention that this generalization has been discovered independently by Dr. J. Smith of Michigan University.

We need some notation. From now on G will be a cyclic group of order n, σ a generator of G, and when $d \mid n$, G(d) will be the unique

Received by the editors October 18, 1965 and, in revised form, March 24, 1966.

¹ This paper was written when the author held an O.N.R. Research Associateship (O.N.R. 432).

subgroup of G having order d. K(d) will be the cyclotomic field of dth roots of unity, O(d) the ring of integers in K(d), and $\zeta(d)$ a primitive dth root of unity.

When d is a prime power, p^i , $(1-\zeta(d))$ is a prime ideal in O(d), whose residue class field has p elements. On the other hand, when d is composite $1-\zeta(d)$ is a unit. This is seen as follows. Let $d=p_1p_2q$, where p_1 and p_2 are distinct primes. Notice that $\zeta(d)^{p_1q}=\zeta(p_2)$ and $\zeta(d)^{p_2q}=\zeta(p_1)$. This shows that $1-\zeta(d)$ divides both $1-\zeta(p_1)$ and $1-\zeta(p_2)$. Taking absolute norms, we see that the norm of $1-\zeta(d)$ divides both p_1 and p_2 . Thus the norm of $1-\zeta(d)$ is a unit, and consequently $1-\zeta(d)$ is a unit.

Let A be a finitely generated Z[G] module. The Herbrand quotient, q(A), is defined to be the ratio of ord $H^0(G, A)$ to ord $H^1(G, A)$.

Let $A^{G(d)}$ be the subset of A left fixed by G(d), and define r(d) to be the Z rank of $A^{G(d)}$.

LEMMA. Let $n = \prod_{p} p^{t(p)}$ be the prime decomposition of n. Then $q(A) = \prod_{p|n} p^{s(p)}$ where

$$s(p) = t(p)r(n) - \sum_{i=1}^{t(p)} \phi(p^i)^{-1}(r(n/p^i) - r(n/p^{i-1})).$$

PROOF. Notice to begin with that $Q[G] \approx Q[x]/(x^n-1)$ where x is an indeterminate. We have $x^n-1=\prod_{d\mid n}\Phi_d(x)$ where $\Phi_d(x)$ is the cyclotomic polynomial of dth roots of unity. Consequently, $Q[G]\approx \sum_{d\mid n}K(d)$. Each K(d) becomes an irreducible Q[G] module, where σ acts as multiplication by $\zeta(d)$.

Consider $V = Q \otimes A$. V is a Q[G] module. Thus $V \approx \sum_{d \mid n} a(d)K(d)$ where the a(d) are certain nonnegative integers. We easily deduce the existence of a Z[G] submodule B of A such that A/B is finite, and $B \approx \sum_{d \mid n} a(d)O(d)$. From the well known properties of the Herbrand quotient we have

$$q(A) = q(B) = \prod_{d \mid n} q(O(d))^{a(d)}.$$

We now compute q(O(d)). For d=1, O(d)=Z acted on trivially by G. Let $N=\sum_{i=0}^{n-1}\sigma^i$. Then $H^0(G,Z)=Z/NZ=Z/nZ$. Since G is cyclic $H^1(G,Z)\approx H^{-1}(G,Z)=Z_N/(1-\sigma)Z=(o)$. Thus q(O(1))=n.

For $d \neq 1$ we have $O(d)^G = (o)$ since σ acts as multiplication by $\zeta(d)$. Therefore ord $H^0(G, O(d)) = 1$. On the other hand, $O(d)_N = \{a \in O(d) \mid Na = o\} = O(d)$, and $(1 - \sigma)O(d) = (1 - \zeta(d))$. Thus $H^1(G, O(d)) \approx H^{-1}(G, O(d)) = O(d)/(1 - \zeta(d))$. The remarks preceding this lemma now show that q(O(d)) = 1 if d is composite and $q(O(d)) = p^{-1}$ if $d = p^i$ is a prime power.

Putting together the information we now have, we get that $q(A) = \prod_{p|n} p^{a(p)}$ where

$$s(p) = t(p)a(1) - \sum_{i=1}^{t(p)} a(p^i).$$

To relate the a(d) with the r(d) notice that the Z rank of $A^{\sigma(d)}$ is equal to the Q dimension of $V^{\sigma(d)}$. The group $G(n/p^i)$ is generated by σ^{p^i} . From the way that σ acts it follows that $V^{G(n/p^i)} = \sum_{j=0}^t a(p^j)K(p^j)$. Therefore, $r(n/p^i) = \sum_{j=0}^t \phi(p^j)a(p^j)$. Solving for $a(p^i)$ we get that $a(p^i) = \phi(p^i)^{-1}(r(n/p^i) - r(n/p^{i-1}))$. This completes the proof.

PROOF OF THEOREM 1. Since G is cyclic the cohomology groups are periodic of order 2. It is thus sufficient to show that $q(O_K) = 1$. If [K:Q] = N, then the Z rank of $O_K^{q(a)} = N/d$. Substituting this information into the formula of the lemma we see that, indeed, $q(O_K) = 1$.

COROLLARY. If G is cyclic of square free order then $H^n(G, O_K) \approx H^m(G, O_K)$ for all integers m and n.

PROOF. The restriction map gives a monomorphism of the p-primary component of $H^i(G, O_K)$ into $H^i(G(p), O_K)$. It follows that the p-primary components of the cohomology groups under consideration are elementary. These groups are thus determined up to isomorphism by their order.

PROOF OF THEOREM 2. Let K be an algebraic number field. Denote by $r_1(K)$ the number of real primes of K, and by $r_2(K)$ one half the number of complex primes. The Dirichlet Unit Theorem states that rank $(U_K) = r_1(K) + r_2(K) - 1$. If k is a subfield of K, the condition that no infinite prime ramify in K means that the extension of every real place is real. This implies rank $(U_K) = [K:k]$ rank $(U_k) + [K:k] - 1$. Using the notation of the lemma, with $A = U_K$, we have r(1) = dr(d) + d - 1. Substituting this into the formula of the lemma we get s(p) = -t(p) and thus $q(U_K) = n^{-1}$. This finishes the proof.

BIBLIOGRAPHY

- 1. C. Chevalley, Class field theory, Nagoya University, Japan, 1953-1954.
- 2. H. Yokoi, On the Galois cohomology group of the ring of integers in an algebraic number field, Acta Arith. 8 (1962/1963), 243-250.

BRANDEIS UNIVERSITY