
TWO THEOREMS ON GALOIS COHOMOLOGY1

MICHAEL ROSEN

1. Introduction. Let k and K be algebraic number fields, K a finite

extension of k with Galois group G. H. Yokoi has considered the ring

of integers Ok in K as a Z[G] module (see [2]). In particular, he has

proven

Theorem. 7/ both K and k are Galois over the rationals Q, and G is

cyclic of prime order, then Hm(G, Ok) ~Hn(G, Ok) for all integers m

and n.

We will prove a generalization of this. Namely

Theorem l.IfGisa cyclic group, then ord Hm(G, Ok) = ord H"(G, Ok)

for all integers m and n.

Notice that we have dropped the hypothesis that both k and K

be Galois over the rationals.

To see how Theorem 1 generalizes Yokoi's result, remember that if

G has prime order p, then multiplication by p annihilates all the

cohomology groups. Thus in this case the cohomology groups are

determined up to isomorphism by their order.

The technique used to prove Theorem 1 can be used to prove other

results of a similar nature. In the same situation as above let us con-

sider Uk, the units of K, as a Z[G] module. Then we have

Theorem 2. Let G be a cyclic group, and suppose that no infinite

prime of k is ramified in K. If ord G = n, then n ord H2r(G, Uk)
= ord H2,+1(G, Uk) for all integers r and s.

The hypothesis about no infinite prime ramifying is satisfied, for

example, when K is totally real or when n is odd.

2. Proofs of the theorems. The proofs of both theorems are easy

consequences of the following lemma which is a direct generalization

of a result of Chevalley in Herbrand quotients (see [l]). It has come

to my attention that this generalization has been discovered inde-

pendently by Dr. J. Smith of Michigan University.

We need some notation. From now on G will be a cyclic group of

order n, a a generator of G, and when d\n, G(d) will be the unique
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subgroup of G having order d. K(d) will be the cyclotomic field of

dth roots of unity, 0(d) the ring of integers in K(d), and £(d) a prim-

itive dth root of unity.

When d is a prime power, p\ (l—£(d)) is a prime ideal in 0(d),

whose residue class field has p elements. On the other hand, when d

is composite 1— £(d) is a unit. This is seen as follows. Let d = pip2q,

where pi and p2 are distinct primes. Notice that £(d)piq — £(p2) and

Z(d)pi<1 = $(pi). This shows that l-f(d) divides both l~$(pi) and

1— £(p2). Taking absolute norms, we see that the norm of 1— £(d)

divides both pi and p2. Thus the norm of 1— £(d) is a unit, and con-

sequently 1—f(d) is a unit.

Let A be a finitely generated Z[G] module. The Herbrand quo-

tient, q(A), is defined to be the ratio of ord H°(G, A) to ord Hl(G, A).

Let AGW be the subset of A left fixed by G(d), and define r(d) to

be the Z rank of Aaw.

Lemma. Let n = YlPpUp) be the prime decomposition of n.  Then

Q(A) = IX* U P'lp) where
f(p)

s(p) = l(p)r(n) - £ 'KpTWn/p*) - r(n/p^)).
»-i

Proof. Notice to begin with that Q[G] ^Q[x]/(x" — 1) where x is

an indeterminate. We have xn — 1 = YLd\n $d(x) where <J><i(x) is the

cyclotomic polynomial of dth roots of unity. Consequently, Q[G]

«* S<*i" K(d)- Each i£(d) becomes an irreducible Q[G] module, where

<r acts as multiplication by £(d).

Consider V=Q®A. V is a <2[G] module. Thus F« £d,B a(d)K(d)

where the a(<Z) are certain nonnegative integers. We easily deduce

the existence of a Z [G] submodule B of A such that .4/5 is finite, and

B~ 2^di„ a(d)0(d). From the well known properties of the Herbrand

quotient we have

q(A) = q(B) = n?(O(<0)*W-

We now compute q(0(d)). For d = l, 0(d) =Z acted on trivially

by G. Let JV = Yffi v*. Then iT°(G, Z)=Z/NZ = Z/nZ. Since G is
cyclic HKG, Z)~H~HG, Z)=ZN/(l-<r)Z = (o). Thus g(0(l))=».

For (i^l we have 0(d)° = (o) since a acts as multiplication by

t(d). Therefore ord TT°(G, 0(d)) = 1. On the other hand, 0(d)N

= \aE 0(d)\Na = o} = 0(d), and (1 - cr)O(d) = (1 - f(d)). Thus
TTKG, 0(d))~H~l(G, 0(d)) = 0(d)/(l-$(d)). The remarks preceding
this lemma now show that q(0(d)) = 1 if d is composite and q(0(d))

= p~l if d = p> is a prime power.
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Putting together the information we now have, we get that q(A)

= Iini" P,ip) where

tip)
s(p) = t(p)a(l) - }Z a(p*).

t-i

To relate the a(d) with the r(d) notice that the Z rank of A G(d) is

equal to the Q dimension of Va^d). The group G(n/p{) is generated

by ov\ From the way that a acts it follows that VGt-"lp''>

= SJ-ofl(pO-K(pO- Therefore, r(n/pi)=2ZU<f>iPiMp'j. Solving
for a(p{) we get that a(pi)=<p(pi)-l(r(n/pi)—r(n/pi-1)). This com-

pletes the proof.

Proof of Theorem 1. Since G is cyclic the cohomology groups are

periodic of order 2. It is thus sufficient to show that g,(Ox) = l. If

[K:Q]=N, then the Z rank of 0|w) = 7V/d. Substituting this in-

formation into the formula of the lemma we see that, indeed, <?(0k)
= 1.

Corollary. 7/ G is cyclic of square free order then Hn(G, Ok)

^Hm(G, Ok) for all integers m and n.

Proof. The restriction map gives a monomorphism of the p-

primary component of H*(G, 0K) into Hl(G(p), 0K)- It follows that

the p-primary components of the cohomology groups under consider-

ation are elementary. These groups are thus determined up to iso-

morphism by their order.

Proof of Theorem 2. Let K be an algebraic number field. Denote

by ri(K) the number of real primes of K, and by r2(K) one half the

number of complex primes. The Dirichlet Unit Theorem states that

rank (UK) =ri(K)+r2(K) — 1. If k is a subfield of K, the condition

that no infinite prime ramify in K means that the extension of every

real place is real. This implies rank (UK) = [K:k] rank (Uk) + [K:k]

— 1. Using the notation of the lemma, with A = Uk, we have r(l)

= dr(d)+d — 1. Substituting this into the formula of the lemma we

get s(p) = —t(p) and thus q(UK) =«_1. This finishes the proof.
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