ON SYMMETRIC MATRICES WHOSE EIGENVALUES
SATISFY LINEAR INEQUALITIES!

FRITZ JOHN

The nonnegative symmetric matrices (@) of order n are those for
which

n

(1a) > aat& =0 forall §

1,k=1

at the same time these are also the symmetric matrices whose eigen-
values \; satisfy

(1b) MZO0, -, A2 0.

Moreover every such matrix can be represented as a sum of # matrices
of the same type that have rank <1 (corresponding to the representa-
tion of definite forms as sums of squares of linear forms).

We have here an instance of a system of linear inequalities (1b)
for the eigenvalues of a matrix that is equivalent to a system of linear
inequalities (1a) for the elements of the matrix. The present note
shows that generally systems of linear inequalities for the eigenvalues
of a symmetric matrix (satisfied irrespective of the arrangement of the
eigenvalues) are equivalent to suitable systems of linear inequalities
for the matrix elements.? Instead of solutions of systems of linear in-
equalities we shall talk of the convex sets formed by such solutions.

The general real nth order matrix a = (@) will be represented by
a point in E,, where m =n?. Let 2 be the set of real symmetric matri-
ces of order # and Q that of real orthogonal matrices. Each a €2 gives
rise to an unordered set of n real eigenvalues that can be represented
by points in E,. For given a EZ we denote by A, the set of all points

A=\, - -+, N, in E, whose coordinates \; are the eigenvalues of a
in some order.?
Conversely we denote for a given A=(\y, + - -, A,) in E, by 4, the

set of all symmetric matrices @ whose eigenvalues suitably arranged
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1 This research was supported by the Office of Naval Research under Contract
No. Nonr-285 (46). Reproduction in whole or in part is permitted for any purpose of
the U. S. Government.

2 The restriction to symmetric matrices is essential. For example positiveness of
the eigenvalues of a general matrix is not expressible by linear inequalities on the
elements.

3 The set A\, has at most #! elements.
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are Ay, - + +, A\n. We associate with a point A=y, - - -, N\,) in E,, the
diagonal matrix with diagonal elements N\, - - -, A\, which we shall
denote by [\]. The relations

(2a) AE A or a€E 4

are then equivalent to the existence of an orthogonal matrix ¢ such
that?

(2b) a = ¢[A]cT.

The correspondence between N and a implied by (2a, b) leads
naturally to two kinds of mappings of sets in E, onto subsets of =
in E,. Given a set ¢ of points in E, we define the sets®

Clo) = {alaez, /\ae«},

D(o) = {alaE Z,aE Ay forsome)\Ea}.

THEOREM. If 0 s a closed convex set in E, then C(c) is closed and con-
vex. If the closed convex set o 1s invariant under all permutations of co-
ordinate axes and is the convex hull of a set T then C(o) is the convex hull
of D(7). If here T is a cone with vertex at the origin then C(c) ts the set
of all matrices that are representable as sum of n matrices in D(7).

(The representation of nonnegative quadratic forms as sums of »
squares is a special case. Here ¢ is the set in E, described by (1b).
We can choose for 7 the subset where all but one of the \; vanish.
Then D(7) consists of the nonnegative matrices of rank =<1.)

PRroOOF OF THE THEOREM. A closed convex set o can be represented
as intersection of closed half-spaces. There exists then a system of
linear inequalities

(3) ﬂl>\1+ "”+ﬂnxn§p
with coefficients (w1, * - -, pa, ) =(u, p) forming a set M in E,;
that completely characterises the points A=(\y, - - -, ;) of ¢. For

a given (u, p) the points X\ satisfying (3) form a closed half-space
H,,,. We have

4 The superscript T denotes transposition.

§ C(o) is the set of symmetric matrices whose eigenvalues in all possible arrange-
ments represent points of ¢, while D(q) is the set of symmetric matrices whose eigen-
values when suitably arranged represent points in ¢. We have C(¢)=D(cs) when the
set ¢ is invariant under all permutations of coordinates.
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o= n 1, ,, C(o') = n C(Hn,p)‘
(,P)EM (u,p)EM

To show closedness and convexity of C(o) it is sufficient to show that
the set C(H,,,) is closed and convex for each u, p. It suffices to prove
that C(H,,,) is identical with the set of matrices a €2 satisfying the
system of linear inequalities

4) trace(ab) = p for all b € A4,.

Let indeed a be a symmetric matrix satisfying (4) and let A& A..
Then a=c[\]cT for some c&Q2. We have

b= c[u]cT € A4,
and hence
trace(ab) = trace([A][u]) = D haus = p.
7=1

Thus NEH,,, whenever A\E A, which proves that a € C(H,,,).
Conversely assume that

Q) a € C(H,,,).
Let \€A, and bE4,. Then
a=c¢[\]¢? and b= d[u]dT where ¢, dE Q.

Denote by e=(e;) the orthogonal matrix e=c7d and by f=(fi) the
matrix with elements f;=e%. Then

trace(ab) = trace(c[\]cTd[u]dT)
= trace([\]e[u]e?) = X fukiu
i,k
Since e is orthogonal the matrix f is doubly-stochastic.® By Birkhoff’s

theorem (see [1, p. 97]) the set of doubly-stochastic matrices forms
a convex polyhedron in E,, with the permutation matrices as vertices.

Hence there exist nonnegative numbers €, - - -, ey of sum 1 such
that
n N
%)
2o faki = 2N
=1 =1

where for each j the numbers A\, Ay, - - + , \? form a permutation

¢ That is the elements of f are nonnegative and those in any row or column add
up to 1.
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of the values Ny, + + -, . Since ADEA, it follows from (5) that

N n . N
trace(ad) = D ¢ Zuk)\f) =D pe = p.
j=1 k=1 i=1
Thus a matrix aEC(H,,,) satisfies (4). We have proved that C(o) is
closed and convex. :
Assume now that the closed convex set ¢ is the convex hull of a set
7, and that ¢ is invariant under all permutations of coordinates. Then
C(o) =D(0). Since 1 Co we have

D(r) C D(s) = C(o).

It follows from the proved convexity of C(¢) that the convex hull of
D(7) is contained in C(c). Conversely let a & C(c). Then a is of the
form a=c[\]cT with A€o and ¢EQ. Since \ is in the convex hull of

7 we can find nonnegative numbers ¢, - - -, ey of sum 1 and points
AD L A in 7 such that
N
A= D G\,
=1
Then
N
6) a= D ec[AD]cT.
j=1

Here the matrices ¢[\?]c” belong to D(7), and consequently a lies
in the convex hull of D(7). It follows that C(¢) is the convex hull of
D(7).

In the special case where 7 is a cone” with vertex at the origin we
can assume that N has the value #, since by Carathéodory’s theorem
(see [2, p. 35]) any point of the convex hull of a connected set in E,
is the centroid of # nonnegative masses located in (not necessarily
distinct) points of the set. We can write (6) in the form

n

a= 2 c[ea®]cT
=1
and have represented a as sum of n elements of D(r), since with
AD also ¢\ lies in 7. Actually the sum of any number of matrices
in D(r) also lies in C(0) since it belongs to the convex hull of D(r).

7 The set 7 is a cone with vertex at the origin if (A4, + - - , \s)& 7 implies (yAy, « « + ,
YA)E T for any real v 20. Cones are connected sets.
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EXAMPLE. Let ¢ be the set of points A\=(\;, - - -, \,) described by
the inequalities
(7 0=N=3a+ - +\)  fori=1,2---,n
(For n=3 the system (7) is equivalent to the triangle inequalities
8) M= A+ As, Ao = A3+ Ay, A3 = A4l

Obviously ¢ is a closed convex set and invariant under permutations
of the \,. Let 7 be the set consisting of the points

9) AN=(140,0,---,0) with¢ = 0
and all those obtained from (9) by permutation of coordinates. Clearly

T is a cone with vertex at the origin contained in ¢. Hence the convex
hull 7 of 7 also is contained in ¢. Actually n=g0, for, as is easily seen,

7 is closed. If 7520 there would exist a point A=Ay, - - - , N,) satisfy-
ing all inequalities (7) and also satisfying an additional inequality
(10) wihi+ e 2 P

which does not hold for any point in 7. This implies that

s + ) < p fori # kandall/ =0

and consequently
(11) wetu20<p for¢ # k.

If none of the quantities u; were positive relation (10) could not hold
since »>0 and \;=0 for all 4. If, say, u1>0 it follows from (7), (11)
that

i — A2 — Xz — - - - — Aa) + (1 u2)he
F+wmtust+ - FmF A =0<p
contrary to (10). Thus ¢ is the convex hull of 7.
From our theorem we find then that every matrix of C(s) is repre-

sentable as sum of # matrices in D(r). A matrix b belongs to D(7) iff
it is of the form b=c¢[\]cT with cEQ and X given by (9). We can write

[\]= —g? where g=(gu) is the skew matrix with elements
gix = 1M2(8iodk1 — 8:1k2).
Then b=c[\]cT= —(cgcT)? where cgc” is again a skew matrix of

rank 2. Hence

Every symmetric matrix of order n whose eigenvalues N; satisfy (7)
can be represented as the megative of a sum of n squares of real skew
matrices of rank =2.
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Conversely we can show

The negative of any sum of squares of skew matrices is a symmetric
matrix with eigenvalues satisfying (7). For any real skew matrix g has
eigenvalues that are either zero or conjugate pure imaginary in pairs.
Then —g2is symmetric and has eigenvalues that are either 0 or posi-
tive and equal in pairs. The eigenvalues of —g? satisfy (7) so that
—g2E& (o). Since C(0) is a convex cone with vertex at the origin any
sum of matrices of the form —g? where g is skew also lies in C(0).

Added in proof. An instance of equivalence of inequalities for matrix
elements and for eigenvalues of the matrix is due to R. Hill [cf. C.
Truesdell and R. A. Toupin, Correction to our paper “Static grounds
for inequalities in finite strain of elastic materials,” Arch. Rational
Mech. Anal. 19 (1965), 407]. Hill finds that the third order sym-
metric matrices a for which

trace (gag) = trace (ag?) <0

for all skew symmetric g0 are exactly those whose eigenvalues \;
satisfy N;+N.>0 for k. This corresponds to our inequalities (3),
(4) with p=0 and u=(¢, ¢, 0) where >0.
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