ON AN APPLICATION OF SLOWLY OSCILLATING FUNCTIONS

MANOJLO MARAVIĆ

1. Let $Q(x_1, \dots, x_n)$ be a point in the *n*-dimensional Euclidean space and $f(Q) = f(x_1, \dots, x_n)$ a real-valued, *L*-integrable function having the period 2π in each variable. Let

(1)
$$f(Q) \sim \sum_{-\infty}^{+\infty} \cdots \sum_{-\infty}^{+\infty} a_{m_1 \cdots m_n} \exp \left(i \sum_{i=1}^n m_i x_i \right)$$

be its Fourier series where

(2)
$$a_{m_1 \cdots m_n} = (2\pi)^{-n} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} f(Q) \exp\left(-i \sum_{j=1}^{n} m_j x_j\right) dx_1 \cdots dx_n.$$

The spherical partial sum of order k of the multiple Fourier series (1) is defined by

(3)
$$S_k(Q) = \sum_{\mu=0}^k A_{\mu}(Q),$$

where

(4)
$$A(Q) = \sum_{\substack{i=1 \ m_1 + \cdots + m_n = \mu}} a_{m_1 \cdots m_n} \exp \left(i \sum_{j=1}^n m_j x_j \right),$$

and $A_{\mu}(Q) \equiv 0$ if μ cannot be represented as a sum of n squares. ϕ -mean of the spherical partial sums (3) is defined by

$$(5) S_{\rho}^{\phi}(Q) = \sum_{\nu \leq \rho} \phi\left(\frac{\nu}{\rho}\right) a_{m_1 \cdots m_n} \exp\left(i \sum_{j=1}^n m_j x_j\right),$$

where $\nu^2 = m_1^2 + \cdots + m_n^2$, and $\phi(t)$ is a function defined for $0 \le t < \infty$ for which $\phi(0) = 1$. The Riesz mean $S_{\rho}^{\delta}(Q)$ of order δ of the spherical partial sums (3) is a particular case of the ϕ -mean (5) when

(6)
$$\phi(t) \equiv K_{\delta}(t) = (1 - t^2)^{\delta} \text{ for } 0 \le t < 1,$$

$$= 0 \text{ for } t \ge 1.$$

Let $f_P(t)$ be the spherical mean of the function f(Q) over a sphere whose radius is t and whose center is at the fixed point $P = (x_1^0, \dots, x_n^0)$, i.e.

Received by the editors April 18, 1966.

(7)
$$f_P(t) = 2^{-1} \pi^{-r-1} \Gamma(r+1) \int_{-1}^{1} (x_1^0 + t\xi_1, \cdots, x_n^0 + t\xi_n) d\sigma_{\xi}$$

where σ is the unit sphere $\xi_1^2 + \cdots + \xi_n^2 = 1$, $d\sigma_{\xi}$ its (n-1)-dimensional volume element and

(8)
$$r = (n-2)/2$$
.

 ϕ -mean $S_{\rho}^{\phi}(P)$, defined by (5), can be expressed in terms of the spherical mean $f_{P}(t)$ [2]:

(9)
$$S_{\rho}^{\phi}(P) = 2^{-r} [\Gamma(r+1)]^{-1} \rho \int_{0}^{\infty} f_{P}(t) H_{\phi}(t\rho) dt,$$

whenever

(10)
$$\int_0^\infty |\phi(t)| t^{2r+1} dt < \infty.$$

The kernel $H_{\phi}(w)$ is defined by

(11)
$$H_{\phi}(w) = w^{-1} \int_{0}^{\infty} \phi(z/w) z^{2r+1} V_{r}(z) dz$$
$$= w^{2r+1} \int_{0}^{\infty} \phi(z) z^{2r+1} V_{r}(zw) dz,$$

where

$$(12) V_{\mu}(z) = z^{-\mu}J_{\mu}(z),$$

and $J_{\mu}(z)$ is the Bessel function of the first kind of order μ .

Bochner proved the following lemmas [2] on the asymptotic behaviour of $H_{\sigma}(w)$:

LEMMA A. Let $\phi(t)$ be either the Riesz kernel $K_{\delta}(t)$ with $\delta > r+1/2$ or a function in $0 \le t < \infty$ having the following properties:

- (i) The inequality (10) holds;
- (ii) if p is the integer defined by $-1/2 \le r-p < 1/2$, then $\phi(t)$ has (p+2) derivatives in $0 \le t < \infty$, each bounded in some neighborhood of t=0, such that

$$\limsup \left| \phi^{(\mu)}(z) \cdot z^{\gamma} \right| < \infty, \qquad \int_{0}^{\infty} \left| \phi^{(\mu)}(z) \cdot z^{\gamma} \right| dz < \infty$$

for $\mu = 0, 1, 2, \dots, p+2; 0 \le \gamma < r+1/2$.

Under these conditions $H_{\phi}(w)$ has the following properties:

$$|H_{\phi}(w)| \leq A_1 w^{2r+1}, \qquad |H_{\phi}(w)| \leq A_2 w^{-1-\kappa}$$

where A_1 , A_2 , and κ are positive constants independent on w.

LEMMA B. If λ is any real number $\geq -1/2$ and if a function $\phi(t)$ satisfies hypothesis (ii) of Lemma A, then

(13)
$$\int_0^\infty \phi(z/w) z^{2\lambda+1} V_{\lambda}(z) \ dz = O(w^{-\kappa}) \quad \text{for } \kappa > 0, \text{ as } w \to \infty.$$

We can consider the spherical mean $f_P(t)$ as the mean of order zero, and define the spherical means of higher order $f_{P,s}(t)$ [3] by

(14)
$$f_{P,s}(t) = 2^{s} \Gamma(s) [B(s, r+1)]^{-1} t^{-2r-2s} \psi_{P,s}(t) \quad \text{for } s > 0$$
$$= f_{P}(t) \quad \text{for } s = 0,$$

where

(15)
$$\psi_{P,s}(t) = 2^{1-s} [\Gamma(s)]^{-1} \int_0^t (t^2 - \tau^2)^{s-1} \tau^{2\tau+1} f_P(\tau) d\tau, \quad s > 0.$$

It is easy to show [3] that

(16)
$$\psi_{P,s+1}(t) = \int_0^t \tau \psi_{P,s}(\tau) d\tau,$$

(17)
$$f_{P,s}(t) = O(1) \quad \text{for } s \ge 1, \text{ as } t \to \infty.$$

 $S^{\delta}_{\rho}(P)$ can be expressed in terms of spherical mean of higher order and so we have [3] the generalized Bochner formula

(18)
$$S_{\rho}^{\delta}(P) = c_{1}\rho^{2r+2s+2} \int_{0}^{\infty} t^{2r+2s+1} f_{P,s}(t) V_{\delta+s+r+1}(t\rho)^{\nu}_{\delta} dt,$$

for $\delta > s + r - 1/2$, where s is a positive integer, and

$$c_1 = 2^{\delta - r - s} \Gamma(1 + \delta) [\Gamma(r + s + 1)]^{-1}.$$

If s=0, this formula holds for $\delta > r+1/2$.

2. We shall express ϕ -mean $S_{\rho}^{\phi}(P)$ of the spherical partial sums (3) in terms of spherical mean of higher order and prove the following.

THEOREM 1. If s is a positive integer and

(19)
$$\int_0^\infty |\phi(t)| t^{2r+2s+1} dt < \infty$$

and $\phi(t)$ satisfies hypothesis (ii) of Lemma A, then

(20)
$$S_{\rho}^{\phi}(P) = \frac{2^{-r-s}}{\Gamma(r+s+1)} \rho^{2r+2s+2} \int_{0}^{\infty} t^{2r+2s+1} f_{P,s}(t) F_{\phi,s}(t\rho) dt,$$

where

(21)
$$F_{\phi,s}(t\rho) = \int_{0}^{\infty} \phi(z) z^{2r+2s+1} V_{r+s}(zt\rho) dz.$$

PROOF. In virtue of the properties of function $\phi(t)$ the assumption (19) implies (10). This means formula (9) holds whenever the condition (19) holds. We write (9) in the form

(22)
$$S_{\rho}^{\phi}(P) = \frac{\rho^{2r+2}}{2^{r}\Gamma(r+1)} \int_{0}^{\infty} t^{2r+1} f_{P,0}(t) (t\rho)^{-2r-1} H_{\phi}(t\rho) dt,$$

where according to (11)

$$(t\rho)^{-2r-1}H_{\phi}(t\rho) = \int_0^\infty \phi(z)z^{2r+1}V_r(zt\rho) dz.$$

If we integrate by parts (22) s times employing (15), (16), (19), (21), and

(23)
$$\frac{d}{dx}\left[V_{\mu}(x)\right] = -xV_{\mu+1}(x)$$

we obtain

$$(24) \quad S_{\rho}^{\phi}(P) = \frac{2^{-r}}{\Gamma(r+1)} \left[Q_{s}(t) \Big|_{t=0}^{t=\infty} + \rho^{2r+2s+2} \int_{0}^{\infty} t \psi_{P,s}(t) F_{\phi,s}(t\rho) dt \right],$$

where

(25)
$$Q_{s}(t) = \rho^{2r+2s} \psi_{P,s}(t) \int_{0}^{\infty} \phi(z) z^{2r+2s-1} V_{r+s-1}(zt\rho) dz,$$

or by (14)

(26)
$$Q_{s}(t) = \frac{B(s, r+1)}{2^{s}\Gamma(s)} f_{P,s}(t) \int_{0}^{\infty} \phi(z/t\rho) z^{2r+2s-1} V_{r+s-1}(z) dz.$$

According to (13) and (17) we get from (26)

(27)
$$Q_s(t) = O[(t\rho)^{-\kappa}] = o(1), \qquad t \to \infty.$$

Further, from (25) and

(28) $|V_{\mu}(x)| \leq M$ on the interval $(0, \infty)$, where M is constant,

we have

$$\left| Q_s(t) \right| \leq M \rho^{2r+2s} \left| \psi_{P,s}(t) \right| \int_0^\infty \left| \phi(z) \right| z^{2r+2s-1} dz.$$

Since $\psi_{P,s}(t) \rightarrow 0$ as $t \rightarrow 0$, it follows by (19) that

$$(29) Q_s(t) = o(1), t \to 0.$$

Now by (24), (27), and (29) we obtain

(30)
$$S_{\rho}^{\phi}(P) = \frac{2^{-r}}{\Gamma(r+1)} \rho^{2r+2s+2} \int_{0}^{\infty} t \psi_{P,s}(t) F_{\phi,s}(t\rho) dt.$$

Employing (14), (20) follows from (30) and Theorem 1 is proved. In particular, if $\phi(t) = K_{\delta}(t)$, i.e. $\phi(t)$ is the Riesz kernel (5), then

$$F_{\phi,s}(t\rho) = 2^{\delta}\Gamma(1+\delta)V_{\delta+r+s+1}(t\rho)$$

and in this case formula (20) becomes (18).

- 3. A function L(x) defined for $x \ge 0$ belongs to the class of slowly oscillating functions at infinity if [4]
 - (a) L(x) is positive and continuous in $0 \le x < \infty$;
 - (b) $\lim_{x\to\infty} [L(tx)/L(x)] = 1$ for every fixed t>0.

We shall employ the following properties of slowly oscillating functions:

(a') If $\lambda > 0$, then [4]

(31)
$$x^{\lambda}L(x) \to \infty, \quad x^{-\lambda}L(x) \to 0, \quad x \to \infty.$$

(b') If g(t) is such that both integrals

(32)
$$\int_{a}^{1} t^{-a} |g(t)| dt \text{ and } \int_{1}^{\infty} t^{a} |g(t)| dt$$

exist for some a > 0, then [1]

(33)
$$\int_0^\infty g(t)L(tx) dt \cong L(x) \int_0^\infty g(t) dt, \quad x \to \infty.$$

4. Now we are going to prove a theorem which will give us the asymptotic behaviour of ϕ -mean $S^{\phi}_{\rho}(P)$ as $\rho \to \infty$, provided we know that the asymptotic behaviour of the spherical mean of higher-order $f_{P,s}(t)$ for $t\to 0$ is connected with the behaviour of a slowly oscillating function.

THEOREM 2. Let $\phi(t)$ satisfy condition (19) and hypothesis (ii) of Lemma A and let

$$(34) -\kappa < \alpha < 2r + 2s + 2,$$

where s is a positive integer and κ is a positive real number.

If at a fixed point $P = (x_1^0, \dots, x_n^0)$

$$(35) f_{P,s}(t) \cong t^{-\alpha}L(1/t), t \to 0$$

where L(x) is a slowly oscillating function at infinity, then

(36)
$$S^{\phi}_{\rho}(P) \cong \beta \rho^{\alpha} L(\rho), \qquad \rho \to \infty$$

with

(37)
$$\beta = 2^{-r-s} \left[\Gamma(r+s+1) \right]^{-1} \int_{0}^{\infty} t^{2r+2s+1-\alpha} F_{\phi,s}(t) dt.$$

PROOF. Since $\phi(t)$ satisfies condition (19) and hypothesis (ii) of Lemma A, then according to the Theorem 1 we can write

$$S_{\rho}^{\phi}(P) = c\rho^{2r+2s+2} \int_{0}^{\eta} t^{2r+2s+1-\alpha} L(1/t) F_{\phi,s}(t\rho) dt$$

$$+ c\rho^{2r+2s+2} \int_{0}^{\eta} t^{2r+2s+1} [f_{P,s}(t) - t^{-\alpha} L(1/t)] F_{\phi,s}(t\rho) dt$$

$$+ c\rho^{2r+2s+2} \int_{\eta}^{\infty} t^{2r+2s+1} f_{P,s}(t) F_{\phi,s}(t\rho) dt$$

$$= I_{1} + I_{2} + I_{3}, \qquad c = 2^{-r-s} [\Gamma(r+s+1)]^{-1},$$

where, by assumption (35), η can be chosen so that

$$|f_{P,s}(t) - t^{-\alpha}L(1/t)| \le \epsilon t^{-\alpha}L(1/t), \text{ for } 0 \le t \le \eta.$$

Whence,

$$|I_{2}| \leq \epsilon c \rho^{2r+2s+2} \int_{0}^{\eta} t^{2r+2s+1-\alpha} |F_{\phi,s}(t\rho)| L(1/t) dt$$

$$\leq \epsilon c \rho^{\alpha} \int_{1/\eta\rho}^{\infty} t^{-2r-2s-3+\alpha} |F_{\phi,s}(1/t)| L(t\rho) dt.$$

By (19) and (28) it follows from (21)

$$\left| F_{\phi,s}(t\rho) \right| \leq M_1.$$

Employing (13) we obtain from (21)

(40)
$$F_{\phi,s}(t\rho) = O[(t\rho)^{-2r-2s-2-\kappa}] \quad \text{for } \kappa > 0, \text{ as } t \to \infty.$$

By virtue of (39) and (40), the function $g(t) = t^{\alpha - 2r - 2s - 3} F_{\phi,s}(1/t)$ satis-

fies conditions (32) for all α defined by (34). Therefore it follows from (33)

$$\int_{0}^{\infty} t^{-2r-2s-3+\alpha} \left| F_{\phi,s}(1/t) \right| L(\rho t) dt = L(\rho) \int_{0}^{\infty} t^{\alpha-2r-2s-3} \left| F_{\phi,s}(1/t) \right| dt,$$

and finally

(41)
$$I_2 = o[\rho^{\alpha}L(\rho)], \quad \rho \to \infty.$$

According to (17) and (40), we obtain

$$|I_3| \leq M \rho^{2r+2s+2} \int_{\eta}^{\infty} t^{2r+2s+1} (t\rho)^{-2r-2s-2-\kappa} dt = M^* \rho^{-\kappa},$$

i.e.

$$|I_3| \le \frac{M}{\rho^{\alpha+\kappa}L(\rho)} \rho^{\alpha}L(\rho), \qquad M^* = \text{const.}$$

Since $\alpha + \kappa > 0$, then by property (a') of slowly oscillating functions we get

(42)
$$I_3 = o[\rho^{\alpha}L(\rho)], \qquad \rho \to \infty.$$

Finally, we have to estimate the integral I_1 . We can write it in the form

(43)
$$I_1 = c\rho^{\alpha} \left(\int_0^{\infty} - \int_0^{1/\eta\rho} \right) t^{\alpha - 2r - 2s - 3} F_{\phi,s}(1/t) L(t\rho) dt = I_{11} + I_{12}.$$

We have already mentioned that the function $g(t) = t^{\alpha-2r-2s-3}F_{\phi,s}(1/t)$ satisfies (32) and hence according to (33)

$$I_{11} \cong c\rho^{\alpha}L(\rho) \int_0^{\infty} t^{\alpha-2r-2s-3} F_{\phi,s}(1/t) dt;$$

i.e.

(44)
$$I_{11} \cong \beta \rho^{\alpha} L(\rho), \qquad \rho \to \infty$$

where β is defined by (37).

According to (40) $F(1/t) = O(t^{2r+2s+2+t}), t \rightarrow 0$. Thus,

$$|I_{12}| \leq M' \rho^{\alpha} \int_{0}^{1/\eta \rho} t^{\alpha+\kappa-1} L(t\rho) dt = M' \rho^{-\kappa} \int_{0}^{1/\eta} t^{\alpha+\kappa-1} L(t) dt.$$

Since $\alpha + \kappa > 0$,

$$|I_{12}| \leq M'' \rho^{-\kappa} = \frac{M''}{\rho^{\alpha+\kappa}L(\rho)} \rho^{\alpha}L(\rho).$$

Whence, by (31) we have

(45)
$$I_{12} = o[\rho^{\alpha}L(\rho)], \qquad \rho \to \infty.$$

Therefore, from (43), (44), and (45) we obtain

(46)
$$I_1 \cong \beta \rho^{\alpha} L(\rho), \quad \rho \to \infty.$$

The result (36) follows from (38), (41), (42), and (46). Theorem 2 is proved.

In particular, if $\phi(t)$ is the Riesz kernel $K_{\delta}(t)$, then [2]

(47)
$$F_{\phi,s}(t) = 2^{\delta} \Gamma(1+\delta) V_{\delta+r+s+1}(t).$$

Substituting (47) in (37) and using the formula

$$\int_0^\infty t^{\mu-1} V_{\nu}(t) dt = 2^{\mu-\nu-1} \Gamma(\mu/2) \left[\Gamma(1+\nu-\mu/2) \right]^{-1} \text{ for } 0 < \mu < \nu + 3/2,$$

we have

$$\beta = 2^{-\alpha}\Gamma(1+\delta)\Gamma[s+(n-\alpha)/2][\Gamma(s+n/2)\Gamma(1+\delta+\alpha/2)]^{-1}$$

as in Theorem 1 of [5]. Theorem 2 covers the Riesz kernel only for $\delta > r + s + 1/2$. Namely, if $\phi(t) = K_{\delta}(t)$ and $\lambda = s + r$, then formula (13) (which was explored in proving this theorem) has the form [2]

$$w^{2r+2s+2} \int_{0}^{\infty} \phi(z) z^{2r+2s+1} V_{r+s}(zw) \ dz = 2^{\delta} \Gamma(1+\delta) w^{r+s+1-\delta} J_{\delta+r+s+1}(w)$$
$$= O\{w^{-[\delta-(r+s+1/2)]}\}, \quad w \to \infty,$$

i.e. $\kappa = \delta - (r + s + 1/2)$. Since $\kappa = 0$, we have $\delta > r + s + 1/2$.

REFERENCES

- 1. S. Aljančić, R. Bojanić and M. Tomić, Sur la valeur asymptotique d'une classe des intégrals definies, Publ. Inst. Math. Acad. Serbe Sci. 7 (1954), 81-94.
- 2. S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), 175-207.
- 3. K. Chandrasekharan and S. Minakshisundaram, *Typical means*, Oxford Univ. Press, Bombay, 1952.
- 4. J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53.
- 5. M. Maravić, Sur certains relations asymptotiques entre les moyennes sphériques d'ordre supérieur et les moyennes de Riesz des séries de Fourier multiples, C. R. Acad. Sci. Paris. 258 (1964), 4407-4410.

WAYNE STATE UNIVERSITY