ON AN APPLICATION OF SLOWLY
OSCILLATING FUNCTIONS

MANOJLO MARAVIE

1. Let Q(x1, - - +, x,) be a point in the n-dimensional Euclidean
space and f(Q) =f(x1, - - -, x.) a real-valued, L-integrable function
having the period 27 in each variable. Let

40

+o0 n
W JQ~ 3 3 meem exp (z' ijxj)

—% i=1

be its Fourier series where

2 emy-.m, = (21r)""j:rr - f_:f(Q) exp( -1 i:mjx,) dxy - - - dxa.

j=1

The spherical partial sum of order k of the multiple Fourier series
(1) is defined by

3) Si(Q) = ; 4,(0),

where

@ 4@ =, T, anmen(iSmn),

Myt etmy=p j=1

and 4,(Q)=0 if u cannot be represented as a sum of % squares.
¢-mean of the spherical partial sums (3) is defined by

) S0 =  6(5) ammyexp (i E i),

vse P Jj=1

where v2=mi+ - - - +mZ, and ¢(¢) is a function defined for 0 <t < «
for which ¢(0) =1. The Riesz mean S(Q) of order & of the spherical

partial sums (3) is a particular case of the ¢-mean (5) when
D) =Kst) =1 —#)°% for0=st<1,
=0 for t = 1.

(6)

Let fp(t) be the spherical mean of the function f(Q) over a
sphere whose radius is ¢ and whose center is at the fixed point
P=(x(1)v ) xg)v ie.
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-

M O =TT+ [ ) do

where ¢ is the unit sphere £+ - - - +£ =1, do; its (n —1)-dimensional
volume element and
(8) r=(mn—2)/2.

¢-mean S?(P), defined by (5), can be expressed in terms of the spheri-
cal mean fp(t)[2]:

©) siBy = 2706 + 017 [ 0B
whenever

10 - 2r+1 d © .

(10) fo | (1) |2r+1dt <

The kernel Hy(w) is defined by

Hy(w) = w‘lfm¢(z/w)z?’+1V,(z) dz
(11) .
= op2r+l 2r+1Vr d ,
w fo & (2)z (zw) dz
where
(12) VM(Z) = Z"“J,,(Z),

and J,(z) is the Bessel function of the first kind of order p.
Bochner proved the following lemmas [2] on the asymptotic be-
haviour of H,(w):

LEMMA A. Let ¢(f) be either the Riesz kernel K;(t) with §>r+1/2
or a function in 0=t < o having the following properties:

(1) The inequality (10) holds;

(i) if p is the integer defined by —1/2=r—p<1/2, then ¢(t) has
(p+2) derivatives in 0<t< =, each bounded in some neighborhood of
t=0, such that

lim sup |¢"‘)(z)~z"| < o, f l¢(“)(z)-z“f|dz < o
0

fOf I“‘=0y 17 21 ] P+2y 0§’Y<T+1/2.
Under these conditions Hy(w) has the following properties:
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| Hy(w) | < A+, | Hy(w)| £ dow '+
where Ay, As, and « are positive constants independent on w.

LEMMA B. If N\ <s any real number = —1/2 and if a function ¢(t)

satisfies hypothesis (ii) of Lemma A, then
(13) f o (z/w)z™ 1V (2) dz = O(w™) for k>0, as w— .
0

We can consider the spherical mean fr(f) as the mean of order
zero, and define the spherical means of higher order fp,(t) [3] by

feo() = 22T(s)[B(s, r + )]y p () fors> 0

(14 = fp(t) fors =0,

where

15 ¥r) = 2@ [ @ = g, s>
It is easy to show [3] that

(16) bruss) = [ ovnate) an,

@17 frs(®) =0(Q1) fors=1, as ¢t — oo,

S2(P) can be expressed in terms of spherical mean of higher order
and so we have [3] the generalized Bochner formula

] r4-28 ® 9420
18 S = f T OV stesraCo)dr,
0
for 6>s+4r—1/2, where s is a positive integer, and
= 2T +8)[I(r+ s+ 1]

If s=0, this formula holds for §>7r+41/2.

2. We shall express ¢-mean S%(P) of the spherical partial sums
(3) in terms of spherical mean of higher order and prove the following.

THEOREM 1. If s is a positive integer and
(19) f | 6() | 2+ dt < w
0

and ¢(t) satisfies hypeothesis (i) of Lemma A, then
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° —r—s w©
20 S (P = —m——— 2r+2a+2f j2rt+2s+1 RG F, (¢ dt,
(20) o(P) rotst 1’ . fr.«()Fs.s(tp)
where
(21) Fyo(tp) = f $(2)2 21V, (2tp) ds.
0

Proor. In virtue of the properties of function ¢(¢) the assumption
(19) implies (10). This means formula (9) holds whenever the con-
dition (19) holds. We write (9) in the form

p2r+2
PT(r + 1)

where according to (11)

(22) Sy(P) = j; 221 b o(£) (tp) =2 H 4(tp) dt,
(to) " 'Hy(tp) = f mcb(z)z?’“V,(ztp) da.

If we integrate by parts (22) s times employing (15), (16), (19),
(21), and

d
(23) d_ [Vll(x)] = — xV,(x)

x
we obtain

i 2 = 2042842 ®
(24) S, (P) = m[@(t) . + pirt2t fo Wr,o()Fy,s(tp) dt],
where
@5) ) = pe() f " (@)Y o s(lp) s,
or by (14)
B(s, 7 + 1 «

(26) Q1) = %;(T)fl’.-(t) j; &(2/tp) 2221V 1y, 1 (2) dz.

According to (13) and (17) we get from (26)

@7 Q) = O[] = 0(1), 1> w.

Further, from (25) and

(28) | Vu(x)| < M on the interval (0, «), where M is constant,
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we have
Q)| = Mp>+2 [ Yr.(t) | f | $(z) |z2r+2-1d3.
0
Since Y p.(t)—0 as t—0, it follows by (19) that
(29) 0.() = 0(1), t—0.
Now by (24), (27), and (29) we obtain
¢ 2—1- foo
30 S,(P) = —————— prist? We.()Fy..(tp) dt.
(30) o(P) I‘(r+1)p , Y p.a(t)Fy.s(tp)

Employing (14), (20) follows from (30) and Theorem 1 is proved.
In particular, if ¢(t) =K;(t), i.e. ¢(¢) is the Riesz kernel (5), then

Fy.s(tp) = 22T (1 + 8)Visirrara(tp)
and in this case formula (20) becomes (18).

3. A function L(x) defined for x =0 belongs to the class of slowly
oscillating functions at infinity if [4]

(a) L(x) is positive and continuous in 0Ex < «;

(b) lim,.,, [L(tx)/L(x)]=1 for every fixed ¢>0.

We shall employ the following properties of slowly oscillating
functions:

(a”) If A>0, then [4]

31) 2 L(x) > », xL(x) >0, r— .
(b”) If g(¢) is such that both integrals

(32) f lt—“]g(t)ldt and f wt“!g(t)‘dt

exist for some a>0, then [1]

(33) ng(t)L(tx) dt = L(x) fwg(t) dt, x— .
0

4. Now we are going to prove a theorem which will give us the
asymptotic behaviour of ¢-mean S?(P) as p— », provided we know
that the asymptotic behaviour of the spherical mean of higher-order
fr.s(t) for t—0 is connected with the behaviour of a slowly oscillating
function.

THEOREM 2. Let ¢(t) satisfy condition (19) and hypothesis (i) of
Lemma A and let
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(34) — k< a<2r+2s+ 2,

where s 1s a positive integer and k 1s a positive real number.
If at a fixed point P=(x3, - - -, x3)

(35) fps() = t—=L(1/1), t—0

where L(x) 1s a slowly oscillating function at infinity, then

(36) SUP) = B°L(p), p— @

with

(37 B=2-[T(r+s+ 1] f wz2r+2~+l—aF¢,x(z) dt.
0

PRroOOF. Since ¢(t) satisfies condition (19) and hypothesis (ii) of
Lemma A, then according to the Theorem 1 we can write

n —a
S5y =t f T L) By (i) di
0

n
+ cp2r+2s+2f t2r+23+l|;fp"(t) — t'“L(l/t)]F¢,.(tp) dt
(38) 0

+ szﬁm-zf rr+2tifp () Fy ,(tp) dt

"
=1+ I+ I c=2"D(r+ s+ 1],
where, by assumption (35), 7 can be chosen so that
| fon(t) — t<L(1/t)| < e=L(1/1), for0 =t <.
Whence,

n
|12| < ecp21‘+28+2f t2r+2s+l~a| Fy.4(tp) | L(1/¢) dt
0

I\

€cp® f rw=sta| F, (1/f) | L(tp) dt.

1/9p

By (19) and (28) it follows from (21)

(39) | Fou(to)| < M.

Employing (13) we obtain from (21)

(40) Fy..(tp) = O[(tp)~2—2=2-*] for x > 0, as t — oo.

By virtue of (39) and (40), the function g(¢) =t*=2—2=3F, ,(1/¢) satis-
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fies conditions (32) for all a defined by (34). Therefore it follows
from (33)

[T Boaa/)| L6 dt = 1) [ R | a,
0 0

and finally
(41) I, = o[p°L(p)], p— .
According to (17) and (40), we obtain

]
(Is| < Mp2r+28+2f ferastl(fp)—2r—2e=2—x Jf = Jf*px,

n

|Ia| = p*L(p), M* = const.

p*+*L(p)

Since a+>0, then by property (a’) of slowly oscillating functions
we get

(42) I = o[p°L(p)], p— .

Finally, we have to estimate the integral I;. We can write it in
the form

© 1/9p
(43) I.=cp® (f B f ) ta=tr=2=3F, J(1/t) L(tp) dt = In + Iro.
0 0

We have already mentioned that the function g(f) =te—2r—2—3F, .(1/f)
satisfies (32) and hence according to (33)

IuECp“L(p)f pe2r=23F, (1/8) dt;
0

i.e.
(44) I11 = Bp=L(p), p—> ®

where (8 is defined by (37).
According to (40) F(1/t) =O(gr+2et2te), 0. Thus,

1/7p 1/a
l Ilzl < M/paf t"‘+’°_1L(tp) dt = M'p—tf t"+‘_1L(t) dt.
0 0

Since a+«>0,
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MII
| Tl = M = o L)

Whence, by (31) we have

(45) Ie = o[p*L(p)], p— .
Therefore, from (43), (44), and (45) we obtain

(46) I, = BpL(p), p— .

The result (36) follows from (38), (41), (42), and (46). Theorem 2
is proved.
In particular, if ¢(t) is the Riesz kernel K;(t), then [2]

(47) Fys(t) = 2°T(1 + 8)Viirres1(t).
Substituting (47) in (37) and using the formula

f =W,(0) dt = 22710 (w/2) [T + v — p/2) ! for0<pu<w+3/2,
0

we have
B =21+ &I[s+ (n — a)/2][T(s + 2/2)T(1 + 6 + a/2)]"

as in Theorem 1 of [5]. Theorem 2 covers the Riesz kernel only for
0>r+4s4+1/2. Namely, if ¢(t) =K;(t) and A=s+r, then formula (13)
(which was explored in proving this theorem) has the form [2]

.w2r+2s+2f é(2) 2221V, (sw) dz = 2°T(1 + Hwrteri=8f;. o 1(w)
0
= O{w-[s-—(r+a+1/2)1}, w— x,

ie. k=0—(r4+s+1/2). Since k=0, we have 6>r+s+1/2.
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