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It is well known that the (solvable) radical of a Lie or Jordan alge-

bra is invariant under all derivations of the algebra if the groundfield

is not modular [4] and [5]. In this note we obtain a similar result

for commutative power-associative algebras of degree one by follow-

ing Jacobson's argument in [5] and then appealing to a theorem of

Gerstenhaber [3] at that point where the Jordan identity was re-

quired.

Our result (Theorem 1) seems useful in classifying simple algebras

of degree one which satisfy identities giving rise to derivations of

the algebras. For example, an immediate corollary to Theorem 1 is

Kleinfeld and Kokoris' determination of simple flexible algebras of

degree one [6]. Then in Theorem 2 we characterize the simple degree

one algebras which satisfy identities considered by Kosier [7], Osborn

[8], and the author [2].

Before giving Theorem 1, it is necessary to state some definitions

and elementary identities.

In an algebra A the associator (x, y, z) and commutator (x, y) are

defined for each x, y, z in A by the equations (x, y, z) =(xy)z — x(yz)

and (x, y) =xy—yx. The following identity may easily be verified.

(1)    (xy, z) = x(y, z) + (x, z)y + (x, y, z) + (z, x, y) - (x, z, y).

Given any algebra A, we may form a commutative algebra A+ by

letting A+ he the vector space of A in which a new product x oy

is defined in terms of the product xy of A by the rule x o y — xy+yx.

By direct calculation, we have

(x o y) o z - x o (y o 2) = (x, y, z) + (x, z, y) + (y, x, z) - (y, 2, x)

- (3, x, y) - (z, y, x) + (y, (x, z)).

Now we proceed to the theorems.

Theorem 1. Let C be a commutative power-associative algebra of de-

gree one over an algebraically closed field F of characteristic zero, so that

C=1F+N, where 1 = unity of C and N is the ideal of all the nilpotent

elements of C [l, p. 526]. Then for any derivation D of C, CDQN.

Proof. Jacobson [5] has pointed out that the identity (wx)D =wDx
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+wxD can be written in operator form as R^ = (Rx, D), where Ru de-

notes the mapping a—*au of C, so that trace 7?x£> = 0 for all xEC.

Moreover, trace Rw = 0 for all w in TV. For since C is commutative

and w is nilpotent, 7?„ is nilpotent [3, Theorem 2], hence trace Rw = 0.

Now suppose that x is an arbitrary element of C and that xD

= al-\-w, where a GP and wEN. Then RxD=aI-\-Rw and 0 = trace Rxd

=a-dim C+trace Rw=a dim C. Therefore a = 0 and xD = wEN.

Corollary. If B is a simple flexible power-associative algebra of

degree one over an algebraically closed field F of characteristic zero, then

B^LF (Kleinfeld-Kokoris [(>]).

Proof. Let C be the algebra B+. Then C is an algebra of degree

one, hence C=1P4-7Y, where N is an ideal of C. In other words,

noaEN for all nEN, aEB. Since B is flexible, the mapping 77: x

—*(x, a) is a derivation of 7?+. From Theorem 1 it follows that C°C7V,

hence, in particular, (n, a) EN. But then, na = \\n o a + (n, a)} EN,

and then an = n o a — naEN, so that N is an ideal of B. Since N9*B

and B is simple, it follows that 7Y = 0 and B = 1F=F.

Theorem 2. Let A be a simple power-associative algebra of degree one

over an algebraically closed field F of characteristic zero, and suppose that

A satisfies one of the following identities:

(3) (x2, y, z) = x o (x, y, z),

(4) (y, x2, z) = x o (y, x, z),

(5) (z, y, x2) = (z, y, x) o x.

Pfeew A has a basis {1, «i, • • • , «»} such that

(6) uiUj = Xijl,    where    X,y =  — Xy, E F,        i, j = 1, • • • , n,

and

(7) det(Xiy) 9* 0.

Moreover,

(8) (x, y, z) = (z, y, x) is an identity in A.

Conversely, if an algebra A has a basis for which (6) and (7) hold,

then A is a simple power-associative algebra satisfying the identities (3),

(4), and (5).

Remarks. Rosier [7] has shown that simple rings with idempotent

9* 1 which satisfy (3) and (5) are alternative. Theorem 2 shows that
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in the degree one case, such rings are not, in general, even flexible.

For results on algebras satisfying (4), see [2] and [8].

Proof of Theorem 2. We again let C he the algebra A+. Then C

is an algebra of degree one, and since C and A are the same vector

space, C — A =1F+N, where N is the ideal of nilpotent elements of

Cand NoAQN.
If the algebra A satisfies the identity (3), then as a linearization of

(3) we have the identity (wox, y, 2)= two (x, y, z) + (w, y, z) ox,

so that for all y, zEA, the mapping D: x—>(x, y, z) is a derivation of

C. Therefore (x, y, z)EN for all x, y, zEA, because of Theorem 1.

Similarly, by linearizing (4) and (5) we obtain derivations of C, so

that in any case we may say that

(9) (A, A, A) C N.

Then from the fact that N o A QN, it follows from (2) and (9) that

(N, (N, N))CZN, and since N o (N, N)CZN, we have that N(N,N)QN
and (N, A) AC A. Applying now (1) and (9), we see that (A2, N)QN,

hence from N2 o AC N, we obtain

(10) N2N C N.

Now we can show that

(11) A2 r\ N is an ideal of A.

Clearly, N2C\N is a subspace of A. Suppose zEN2C\N and let

a = al+w, aEF, wEN, be an arbitrary element of A. Then za

= az+zwEN+N2N<ZZ-N because of (10), and za is clearly contained

in A2. Therefore 2a£ A2PtA. Similarly, azEN2f^N, which completes

the proof of (11).

Since A is simple, we must have N2t~\N = 0. Now suppose that

{ui, ■ ■ ■ , un} is a basis for N. Then tt,-«/=Xyl-f-Zy, where XyF and

znEN. Let w he an arbitrary element of N. Then z{jW = (uiUj)w

—Xyw£A2fW because of (10). Therefore 2yw = 0. Similarly, wzif = 0.

But then ZijF is an ideal of A which is contained in N. From the fact

that A is simple we conclude that 2y = 0. Thus M,-K/=Xyl, and since

Ut o UjEN, Xy = — Xy. We have proved (6).

Suppose that det(Xy) = 0. Then there exist £1, • • • , £« in F, not

all =0, such that

n

23 Ay& = 0,        i = 1, • • ■ ,n.

Let x=^"_i %jUj.  Then for each t=l, • • •,  n, UiX=Y%=i£iuiuj
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= 2~L"= i A»'i£i •1=0= —xw,. Therefore xP would be a proper ideal of A,

contrary to simplicity. Hence det(Xiy) 9*0.

Having the multiplication table for the basal elements of A, it is

quite easy to verify (8), so the proof will be omitted. The converse is

straightforward and is left to the reader for verification.
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