ON A RECENT THEOREM BY H. REITER

I. NAMIOKA

Let G be a locally compact group with a fixed left invariant Haar measure μ . Let us consider the following three statements concerning G. (All the linear spaces appearing below are real linear spaces.)

(M): There is a mean m on $L_{\infty}(G)$ such that m(xf) = m(f) for each $f \in L_{\infty}(G)$ and each $x \in G$. Here a mean on $L_{\infty}(G)$ is a linear functional m on $L_{\infty}(G)$ such that $m(g) \ge 0$ whenever $g \ge 0$ and m(1) = 1, and, for a real valued function f on G, xf is a function on G defined by xf(y) = f(xy).

(P₁): Given a positive number ϵ and a compact subset K of G, there is an element s in $\Phi = \{f: f \in L_1(G), f \ge 0 \text{ and } \int f d\mu = 1\}$ such that $\|x - s\|_1 < \epsilon$ for each $x \in K$.

(J): There is a mean m on $L_{\infty}(G)$ such that m(s*f) = m(f) for each $f \in L_{\infty}(G)$ and each $s \in \Phi$. Here "*" denotes the usual convolution with respect to μ (see, for instance, Hewitt-Ross [1]).

The property (J) was introduced recently by Hulanicki in [2], where it is proved that a group G satisfies (J) if and only if it satisfies (P₁). More recently Reiter proved that (M) implies (P₁) [3]. (The reverse implication (P₁) \Rightarrow (M) is simple and well known.) In this note we shall give a short proof of the implication (M) \Rightarrow (J), thus giving another proof to Reiter's theorem.

THEOREM. If a locally compact group G satisfies (M), then it satisfies (J).

PROOF. Let m be a mean on $L_{\infty}(G)$ such that m(x) = m(f) for each $f \in L_{\infty}(G)$ and each $x \in G$. Let h be a fixed member of $L_{\infty}(G)$ such that $h \ge 0$, and let ϕ be a linear functional on $L_1(G)$ defined by $\phi(g) = m(g*h)$ for $g \in L_1(G)$. Then, since $|\phi(g)| = |m(g*h)| \le ||g*h||_{\infty}$ $\le ||g||_1 \cdot ||h||_{\infty}$, ϕ is bounded, and $\phi(x) = \phi(g)$ for each $x \in G$ because of $x \in K$ the uniqueness of Haar integral, there is a nonnegative number k(h) such that, for each g in $L_1(G)$,

(1)
$$m(g*h) = k(h) \int g d\mu.$$

Obviously k(1) = 1, $k(\lambda h) = \lambda k(h)$ and k(h+h') = k(h) + k(h') for $\lambda \ge 0$ and nonnegative elements h, h' of $L_{\infty}(G)$. Hence k can be extended to

Received by the editors February 28, 1966.

1102 I. NAMIOKA

be a mean (again denoted by k) on $L_{\infty}(G)$, and (1) is now valid for each $g \in L_1(G)$ and each $h \in L_{\infty}(G)$. Now take s in Φ and f in $L_{\infty}(G)$; then by (1) we have

$$k(f) = k(f) \int s * s d\mu = m((s * s) * f) = m(s * (s * f))$$
$$= k(s * f) \int s d\mu = k(s * f).$$

Hence k is a mean satisfying (J).

REFERENCES

- 1. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. 1, Springer-Verlag, Berlin, 1963.
- 2. A. Hulanicki, Means and Følner condition on locally compact groups, Studia Math. (to appear).
- 3. H. Reiter, On some properties of locally compact groups, Indag. Math. 27 (1965), 697-701.

University of Washington