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In this note the following notations are used.

G denotes a commutative semigroup with identity 1 and H a sub-
semigroup containing 1.

N is a real-valued function on G such that (i) N=0 (ii) N¥(1)=1
(iii) N(xy) £ N(x)N(y) for elements x, v in G.

A real homomorphism ¢ is a function on G (or H) satisfying (i), (ii)
and ¢(xy) =¢(x)$(y).

Our interest is in real homomorphisms subject to the inequality
Nz=¢=0, and especially in homomorphisms of this type which are
maximal in that N=o=¢ =0 implies ¢ =o0.

THEOREM 1. Suppose that ¢ is a real homomorphism of H and
(iv) ah=bhe(a, bEG, h;EH) implies N(a)p(hy) Z¢(hs).

Then ¢ can be extended to a real homomorphism o for which N Zo=1.

Proo¥. In the family { N’} of functions N’<N which fulfill re-
quirements (i)—(iv) there is evidently a minimal element and we can
assume that the given function N is itself that minimal function.
Under these circumstances it is to be proved that ¢=N is the real
homomorphism required. The method of proof is the construction
of a function M which fulfills (i)—(iv) and is finally identified with N.

We consider the equations (vi) ahy =x"bhs(a, b, xEG, h,€EH, n=1).
For each x, let M(x) =inf{¢(h1)N(a)/¢>(h2)}"", the infimum taken
over all solutions of (vi). The verification that M satisfies (ii)—(iv)
follows.

Writing a=b=h=h=x=1 yields M(1)=1 and if ahi=0bh,,
N(a)p(h) =¢(he) by (iv). To prove (iii) for M, suppose in addition to
(vi) that chy=dy™hs. Then

mn_m

ac hihy = bmd"-(xy) Ty s

whence

& (h)"¢(h3)" N (a™c™) } 1/mn
d(h)mp(ha)™

which is less than the product of the corresponding ratios for M(x)
and M(y).
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M(xy) = {
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For obvious reasons (iv) is attacked indirectly; we show first that
M=¢in H. To see that M =¢ in H suppose that ah, = h"bh,. Applying
(iv) to the function N, N(a)¢(h1) Z¢(h)"d (k) so M (k) =¢(h). In the
reverse sense 1-h=1-h-1 yields immediately M (k) <¢(k). We ob-
serve also that M(xy) = M(x), for if ahi=b(xy)"h, we have ah
= by" cx" hg.

The proof that M satisfies (iv) is now easy: M(a)¢ (k1) = M(a) M(hy)
= M(bhy) = M(hs). Trivially MS<N so M=N.

If x€G and m =21, M(x™h) = M(x)"M(k) or equivalently
M(@x)"M(h) < M(xmk). To see this suppose ahy= (x™h)"bhy in (iv);
then since ahy=x™"-b-h*h, M(x) = {N(a)d;(hl)/d)(hz)d)(h)"}”""‘ which
yields the asserted inequality.

Thus M is multiplicative in the semigroup generated by H\U {x} ;
since M (= N) was minimal, repetition of the same argument shows
that M is multiplicative in the semigroup generated by H\U {x, y } SR
Since M(x-1)= M(1)=1 is known, the proof of Theorem 1 is com-
plete.

The necessity of (iv), one observes, is obvious.

THEOREM 2. Suppose aEG, r>1 and N(a"x) Zr" for all xEG, n21.
Then there is a real homomorphism ¢ of G such that ¢(a)=r and
Nz¢=1.

Proor. H is taken here to be the semigroup of 1 and the powers
of a. Since N(a") Zr* for each # it is clear a®>a™ when m>n=0, for
if equality is obtained H would be finite. Thus we can define ¢(a™) =r~
for =0 and turn to the hypotheses of Theorem 1.

I. xa»=ya™ and m=n+4p>n=0. Rearranging, xa"=ya?-a" and
then for each integer s=1, x%"=(ya?)’-a, inductively: if the last
equality holds,

x*¥lgn = (yar)*-xa™ = (ya?)*tlar.
Then

N(x)'N(a)» = N(yartr) 2 reetn,
Taking the s-root and letting s— » gives N(x) =7? or

N@x)rm = retn = gm,
II. xa*=ya™ and n Zm. Inasmuch as »» =" it is enough to check
that N=1in G. But
N@)»N@) =2 N@a) 2r >0

so N(x)=1.
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Theorem 1 now gives the proof of Theorem 2.

THEOREM 3. Let ¢ be a real homomorphism of H such that N=¢=0
and ¢ is maximal among all homomorphisms with this property. Then
¢ can be extended to a homomorphism o of G, NZo =0.

PRrROOF. ¢ is maximal also in the subset S of H in which ¢>0. For
if N2x=¢=0in S, x can be extended to H by setting it equal to
zero in H—S so x=¢ in S. If then ¢ can be extended from S to a
real homomorphism ¢ of G, N=0¢ =0, necessarily ¢ =¢ in S\U(H —S5)
so 0 =¢ in H. In brief we can suppose ¢ >0 in all of H.

The hypothesis that ¢ >0 be maximal can be restated: if N/¢p=0p
=1 for a homomorphism p of H, then p=1. But N/¢ satisfies the
axioms (i)—(iii) and Theorem 2 is applicable for N/¢ = Ni.

The proof of Theorem 3 is now completed by the criterion of [1]
for the existence of the required homomorphism ¢. Namely: x,EG,
hoEH and xohoE€ H, implies that N(xo)p(ho) =@ (xoh0).

The verification follows.

Given r>1 there exist by Theorem 2 an integer =1 and an ele-
ment k& H for which Ny(hgh) Sr" or

N(hoh) < 7" ¢ (o) "$(h).
But x¢he&E H so that

0 < ¢(xoho) " d(h) < N(x0)"NUioh) < N(x0) 7 d(ho) d(h).

Finally 0 <¢(xoho) SrN(x0)¢(ho) and Theorem 3 is proved.

REMARK. Hausdorff’s principle may be used to prove the Theorem
of [1], as Theorem 1 is proved here. This procedure is used in (2]
to obtain a related result.
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