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In this note the following notations are used.

G denotes a commutative semigroup with identity 1 and 77 a sub-

semigroup containing 1.

N is a. real-valued function on G such that (i) TVSiO (ii) 7V(1) =1

(iii) Nixy) ^7V(x)7V(y) for elements x, y in G.

A real homomorphism <j> is a function on G (or 77) satisfying (i), (ii)

and <j>ixy) =c/>(x)c>(y).

Our interest is in real homomorphisms subject to the inequality

X^c6 2;0, and especially in homomorphisms of this type which are

maximal in that TV 2: er S: c/> S: 0 implies </> = <r.

Theorem 1. Suppose that (pis a real homomorphism of 77 and

(iv)    ahi = bh2ia, &£G, fei£77) implies 7V(a)c6(^i) ̂(pih2).

Then 4> can be extended to a real homomorphism a for which TVSrcr £: 1.

Proof. In the family {N'\ of functions 7V':S7V which fulfill re-

quirements (i)-(iv) there is evidently a minimal element and we can

assume that the given function TV is itself that minimal function.

Under these circumstances it is to be proved that (T = N is the real

homomorphism required. The method of proof is the construction

of a function 717 which fulfills (i)-(iv) and is finally identified with TV.

We consider the equations (vi) ahi = xnbh2ia, b, x£G, fci£77, rag: 1).

For each x, let Mix) =inf {(pihi)Nia)/(^ih2) }lln, the infimum taken

over all solutions of (vi). The verification that M satisfies (ii)-(iv)

follows.

Writing a = b = hi = h2=x = 1 yields 717(1) 5=1 and if ahi = bh2,

Nia)(pihi) }^(f>ih2) by (iv). To prove (iii) for 717, suppose in addition to

(vi) that chz = dymht. Then

m  n       m   n in.   n mn   m   n

a c -hih3 = o d ■ (xy)    h2 hi

whence

j(j>ik1)md)ih3)nNiamcn) |llmn

M{XJ) "  t       d>ih2)m4>(hdn       /

which is less than the product of the corresponding ratios for 717(x)

and M(y).

Received by the editors September 3, 1965.

1 Supported in part by the National Science Foundation.

1314



MAXIMAL SEMICHARACTERS 1315

For obvious reasons (iv) is attacked indirectly; we show first that

M=<p in 77. To see that M^<p in 77 suppose that ah\ = fen6fe2. Applying

(iv) to the function N, N(a)<p(h) Sic6(fc)"c6(/?2) so M(h)^<p(h). In the

reverse sense l-h = l-h-l yields immediately M(h)^<p(h). We ob-

serve also that M(xy) Si M(x), for if ah\ = b(xy)nhi we have afti

= byn■x"■h^

The proof that M satisfies (iv) is now easy: M(a)<p(hi) = M(a)M(h)

^M(bh2)^M(}h). Trivially M^N so M=N.
If x £ G and m Si 1, M(xmh) = M(x)"*M(/f) or equivalently

M(x)mM(h)^M(xmh). To see this suppose aht = (xmh)nbh2 in (iv);

then since a/ti = xmn• b■ hnh2 M(x) ^ {N(a)<p(h)/<p(h2)<j>(h)n}1/m" which

yields the asserted inequality.

Thus M is multiplicative in the semigroup generated by 77W{x};

since M ( = N) was minimal, repetition of the same argument shows

that Mis multiplicative in the semigroup generated by 77U {x,y} • • •.

Since M(x-1) SiM(l) = 1 is known, the proof of Theorem 1 is com-

plete.

The necessity of (iv), one observes, is obvious.

Theorem 2. Suppose a £ G, r > 1 and N(anx) Si rn for all x £ G, w Si 1.

77?ew /Aere is a rai/ homomorphism <p of G such that <p(a) = r and

ASic/>Sil.

Proof. 77 is taken here to be the semigroup of 1 and the powers

of a. Since N(an) Sir" for each n it is clear am9£an when m>raSi0, for

if equality is obtained 77 would be finite. Thus we can define <p(an) = r"

for n Si 0 and turn to the hypotheses of Theorem 1.

I. xan=yam and m = n+p>n>:0. Rearranging, xa"=yap-an and

then for each integer sSil, x'an = (yap)'-a", inductively: if the last

equality holds,

x,+lan = (ya")s-xan = (yap)'+lan.

Then

N(x)3N(a)n Si N(y'aps+n) Si rps+n.

Taking the s-root and letting s—>co gives Af(x) Sir" or

N(x)rn Si rp+n = rm.

II. xan = yam and wSiw. Inasmuch as rn^rm it is enough to check

that A7 Si 1 in G. But

X(x)\Y(a) Si A^(xsa) Si r > 0

so A(x)Sil.
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Theorem 1 now gives the proof of Theorem 2.

Theorem 3. Let c/> be a real homomorphism of 77 such that A7g:<6 2:0

and 4> is maximal among all homomorphisms with this property. Then

(p can be extended to a homomorphism a of G, 7VS:crg:0.

Proof. c& is maximal also in the subset 5 of 77 in which <6>0. For

if TV2:x =0 = 0 m S, x can be extended to 77 by setting it equal to

zero in H — S so x=<t> in ■$• If then </> can be extended from 5 to a

real homomorphism a of G, TVg:crg:0, necessarily crg:c& in 5W(77—5)

so <x= 4> in 77. In brief we can suppose c/>>0 in all of 77.

The hypothesis that c/>>0 be maximal can be restated: if 7V/c/>2:0

2:1 for a homomorphism p of 77, then p = l. But 7V/c6 satisfies the

axioms (i)-(iii) and Theorem 2 is applicable for TV/c/> = TVi.

The proof of Theorem 3 is now completed by the criterion of [l]

for the existence of the required homomorphism a. Namely: x0£G,

&o£77 and Xo/fo£77, implies that TV(x0)c/>(^o) e?</>(xo«o)-

The verification follows.

Given r>l there exist by Theorem 2 an integer rag:l and an ele-

ment /t£77 for which TVi(/?"fe) gr" or

Nihlh) ^ r"d>ih0)"<t>ih).

But xofeo£77 so that

0 < (I>ix0ho)n(t>ih) ^ Nix0)nNihah) ^ N(xa)V<t>(ho)n4>(h).

Finally 0<c6(x0/?o) ^f7V(xo)c/>(/Jo) and Theorem 3 is proved.

Remark. Hausdorff's principle may be used to prove the Theorem

of [l], as Theorem 1 is proved here. This procedure is used in [2]

to obtain a related result.
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