ON AN EXAMPLE IN SECOND ORDER LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

D. WILLETT

Let b(¢) be a given positive nondecreasing continuous function on
the set £=0. In this note we will prove the following result:

THEOREM. There exists a positive continuously differeniiable function
a(t) such that a'(t) Zb(t) and the differential equation

d
1) ¥t a@x=0 t=0 (' =d—t>,

has at least one solution x =x(t) such that

2) limsup | x(f) | > 0.

The above theorem generalizes the examples given by Milloux [4],
Hartman [3], and Galbraith, McShane, and Parrish [2], whose
methods do not necessarily produce a function a(f) with a’(f) 2b(¢),
if b(¢) is taken of sufficiently large order as t— . Such examples are
of interest in regard to the converse problem, i.e., what conditions
besides a(¢) T = as{ T  need to be assumed in order to know that all
solutions of (1) satisfy x()—0 as ¢— . The book by Cesari [1, pp.
84-86] has a good discussion of this problem. Willett, Wong, and
Meir [5] list some new results in this direction. We take the occasion
to point out that in [1, p. 86] Sansone’s sufficient condition there re-
ported should read, “If a(¢) is positive, nondecreasing, with a con-
tinuous derivative in [f, + % ], if a’({)— «, and [**a~1(¢)dt = =, then
for every solution x(f) of (1) we have x(¢)—0 as t—+ «.” This
corrects a misprint in [1, p. 86] (where “=+ ©” was printed
as “< o »)‘

In order to prove our main theorem, we will need the simple prop-
erties of solutions to (1) stated in the following lemma.

LEMMA. Let x(t) be any solution of (1) for a given continuous a(t),
and let u and T be positive numbers such that a(t) Z u for all t in [0, T].
Then x' has finitely many zeroes in [0, T], and if to<t;< - - - <t. are
those geroes then 0 <ty —t_1 2w~ (k=1,2, - -, n).

Proor. By the Sturm Comparison Theorem, for any solution x(¢)
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of (1), x(¢) has a finite number of zeroes in the interval 0= 7. If
71 and 7, are successive zeroes, then 7;—71 <7u"'. Now between 7; and
79, x(t) is either always positive or always negative. Hence, since
%" () = —a(t)x(t), x is either strictly concave or strictly convex for
71=t=7,, and so x has exactly one critical point between 7, and 7,.
Clearly the lemma follows.

Proor oF THE THEOREM. Let

ai(f) = 4n* + ftb(s)ds

for tin [0, tl], where #; is such that 1 <4 =1 and x{ (41) =0 for x1(¢) the
unique solution to

.’\51” + d](t)xl = 0, xl(O) = x¢ > 0, x{ (0) = 0.

By the lemima, such a point ¢ must exist. For ¢t>{; define a1(¢) =x:(f)
=0. Finally, let 0<e, <1 be a given sequence of numbers such that
) =1 —ea)xiand Y op e < .

The proof of the theorem is inductive in nature. Suppose that a set

of numbers 0=(,<f; < - - - <t,—1 such that

(3) <ty S1 (B=1,2,--,n—1)

and a set of functions a.(t), x:(t) (k=1, 2, - - -, n—1) have been de-
termined so that the following holds (k=1, 2, - - -, n—1):

o 4+ a@®xe =0 and &l () = b(t) for tE [ty ),
() = an(t) = 0 for (€ [y, tel,

Wltier) = woa(temr), o (1) = af () = 0,

a(tiey) = ar—1(te-1), @l (1) = b(t—1), af () = b(k).

Suppose also that

(4)

) nl) 2 (- e)nle)  (k=1,2--,n—1).

If we can obtain by induction a sequence of points {tk} and functions
{ak(t)} and {xk(t)} satisfying (3), (4), and (5), the theorem will fol-
low by taking

-] L]

a(t) = Y, a() and =(t) = > a(t).

k=1 k=1

From (5) we obtain

) 2 (1 — el 2 [L 04—t (=12

=1
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Since ti— © as k—» and ) 2, <,
lim sup #%(¢) = H a- e,)xo > 0.
t=—> o ]—1

Thus, we have to show the existence of a point ¢, and functions
aq(t) and %,(t) such that (3), (4), and (5) hold with k=#. Let a be
any positive number satisfying o > @n1(ta1) + (1 + ¢,—1) and
a> (e'—1)b(1+t,_1). For « fixed, let s, be any number satisfying
0<sp—tn1<% and

2 1/2
6) sp—tha < {—— [1 - (1 =)+ a1 + tn_l))1’2]} .
a

Finally, let

() _f b(r)dr-l- <a — f b(r)dr) (1 — cos T t:t::l)

th-1

1 t— tn—l
+ 2y n1(ta-1) (1 + cosw ——)

Sn — a1

for t,_1=t=<s,, and let
t
() = a + f b(r)dr
for s,<t=<t,. Here, t, is any point such that $=<¢,—¢,_1<1 and
% (ta) =0 for x,(f) defined on [ta_1, t,] to be the solutlon of
VD + an(t)xn = 07 xn(ln—l) = xﬂ——l(tn—l), Xy (tn—l) = 0.

By the lemma, such a point ¢, must exist. Let x,(t) =a.(t) =0 for ¢
not in [t._y, £,]. It is easy to verify that a,.(¢) is a continuously differ-
entiable function on [t,_i, t,], and that a,.(f) and x,(¢) satisfy (4) with
k=mn.

We will now prove that x,(¢) satisfies (5) with k=n. For the sake
of brevity in what follows, let x=x, and a=a,. Since x'(¢t,_;) =0,
by Taylor’s Theorem we obtain

2(s2) — 2(ta1) = 3(sn — a2 (c)  (tn1 < ¢ < ).
Because a’ =20, the set of maxima of |x(t)| are decreasing; hence
|27@ | = a(@) | 2(9) | = a(sn) | 2t |
So
0] |G | 2 [t = 30 — ta-i)?a(sn)] | 2(ta) |.
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In order to estimate Ix(t,.)] , we integrate x'x"’'4axx’ =0 by parts to
obtain

a(t)*(t) = [¥'(sn)]* + a(sn)w2(sa) + f &) [x(0) 2.

Hence

BN C

() 1+ a0+ tay)

(®) X (ta) 2
since a(s,) =« and
a(t,) — a = ftnb(t)dt S 0(ta) s — s0) S 0(1 4 tay).

Combining (7) and (8), we obtain
1
2 R e
But from (6) it follows that
[1 = 3(sn — tan)?a]?
1+ a 01 + tu_y)

Hence, x2(f,) = (1 — €,)x%(f»—1), and the theorem follows.

>1— €.
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