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1. Introduction. In a series of papers [4]- [6] Mikusinski and Sikor-

ski considered the following problem. Let V be a vector space over a

field of characteristic 0 and let D be a locally algebraic linear trans-

formation of V (i.e., given any x in V there is a polynomial /(X)?^0

over F with x/(P)=0). If 4 = F[X] is the polynomial ring in one

variable over P, V becomes an A -module under the definition

x/(X) =xf(D) for x in F,/(X) in A. The Mikusinski-Sikorski hypothe-

ses on V and D can be phrased as follows.

I. If/(X)G-4 has degree w^ 1, the kernel oif(D) has dimension gw.

II. If/(X), g(X) in A have positive degrees and if the dimensions

of Ker/(P) and Ker g(D) are m and w respectively, the dimension of

Kerf(D)g(D) is >w+w.
Mikusinski and Sikorski [5], [6] then proved the

Theorem. If D is a locally algebraic linear transformation of V

satisfying I awd II, there is a linear transformation T of V with TD —

DT = I, the identity transformation of V.

Mikusinski [4] also demonstrated a converse; namely he proved

the

Theorem. If D is a locally algebraic linear transformation of V

satisfying condition I and if there is a linear transformation T of V

with TD — DT = I then condition ll is satisfied.

The generalizations treated in this paper may be formulated as

follows. Let D be a locally algebraic linear transformation of V; in-

stead of the conditions listed above, the assumption will be

III. V is a divisible ^4-module (i.e., given y in V and f(X)9*0 in

A = F[\] there is an x in V with x/(X) =xf(D) =y).
The first theorem may be stated as

Theorem 1. If D is a locally algebraic linear transformation of V

satisfying condition III, then a linear transformation, T, of V exists

with TD-DT = I.

The converse result established is

Theorem 2. // D is a locally algebraic linear transformation on V
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over F of characteristic 0 and if a linear transformation, T, of V exists

with TD—DT = I, then condition III is satisfied.

The characteristic 0 hypothesis cannot be omitted in Theorem 2

as will be shown by an example due to A. A. Albert. It will be shown

that these results imply a generalization of the Mikusinski-Sikorski

results and that this generalization implies one obtained by Mr.

James Geer in a Master's thesis [2] at the University of Virginia.

The author expresses his appreciation to Professor M. Rosenblum for

calling this problem to his attention.

2. Sufficiency of the condition III. As usual the ^4-module V will be

termed a primary A -module if there is an irreducible element p=p(K)

of A such that every element of V is in the kernel of ipiD))k ior

some fe. The following lemmas are well known [3] but are included

for convenience.

Lemma 1. If D is a locally algebraic linear transformation of V, then

V is the iweak) direct sum of primary A-modules.

Lemma 2. A direct sum of A-modules is divisible if and only if each

summand is divisible.

Now if Vp is a primary component of V and if Tv is a linear trans-

formation on Vp satisfying [Tp, D] = TPD — DTP = I on Vp, then the

direct sum P= zZp Tv OI the Tp for p ranging over the irreducible

polynomials of A clearly satisfies [P, D] =1 on V.

The previous remark and Lemmas 1 and 2 clearly reduce the prob-

lem to the case in which V is a primary divisible A-module for the

prime p of A, and this hypothesis is maintained for the remainder of

this section.

For each integer fe^ 1 let

(1) Vk= [xE V:xipiD))k = 0}

so that Vk is the kernel of ipiD))k, is an .4-submodule of V (i.e., is a

P-invariant subspace of V), and satisfies FfcC Vk+i, Vk+iipiD))E Vk,

andU»"-i Vk=V.

Lemma 3. If V is a primary divisible A-module for the prime poly-

nomial p(\) of degree m^l, there is a basis {x(a, k)D'} a,j,k of V where

a ranges over some index set, and 0^j^m — l and fe^l is an integer.

Since xp=xpiD) =0 for all xEVi, Vi is a vector space over the

field P = F[\]/ip(S.)) and as such has a basis {x„}a over K. Now 1,

X, ■ • ■ , X"'+1 modulo p(X) form a basis for K over F and so well known
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vector space arguments show {x«Xy}„,y to be a basis of Vi over P.

Now XaX' = xaD' and so {xaPJ}a,; is a basis of Fi over F. To simplify

the notation write xa = x(a, 1) and choose inductively (by the divisi-

bility hypothesis) x(a, k-\-l) in Vk+i with x(a, kArl)p(D) =x(a, k).

The vectors {x(a, k)D'}a,j,k are linearly independent over P. For if

n+l m-l

(2) ZEE 00, *, j)*(«, k)D* = 0
a     *=1   j'=0

apply p(D)n to (2) to obtain

m-l

(3) Y E 0(«,» + i,i)*(«, i)^J' = o.
a     3=0

By the choice of x(a, 1), relation (3) yields j3(a, w + 1, j) =0 and an

obvious induction establishes that all (l(a, k, j)=0. To see that

the chosen vectors span V, the argument proceeds from Vk to Vk+i.

In order to avoid an excessive amount of notation the step from Vi to

V2 will be indicated. IfxG V2,xpE FiSothatx£= ^,ajP(a,j)x(a, 1)D>;

let y= E«.j P(a> j)x(a, 2)D> and observe that z = x—y lies in

Fi since yp=xp. Thus z= E»,j0'(a, /)*(«> 1)P' and x=y-\-z

= I.,, /3(a, j)x(a, 2)P'+ Ea., 7(«, J>(«, 1)PJ'-
To conclude the proof of Theorem 1, P is explicitly constructed in

terms of the basis {x(a, k)D'} of Lemma 3. Define

x(a, k)T = x(a,k + 1),

x(a, k)DT = x(a, k A- l)D - x(a, k),

(4) x(a, k)D2T = x(a, kArl)D2- 2x(a, k)D,

x(a, k)Dm~lT = x(a, k + l)!)™"1 - (m - l)x(a, k)Dm~2.

It only remains to establish [T, D] =P The calculation is as follows:

x(a, k)D*TD = [x(a, k + 1)D* - jx(a, k)D*-l]D

= x(a, k A- 1)P'+1 - jx(a, k)D>

and

x(a, k)D'(DT) = x(a, k + l)D»l - (j + l)x(a, k)D>.

Upon differencing these two results one obtains

x(a, k)D*(TD - DT) = x(a, k)D*

which is exactly the desired result. It should be remarked that these
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calculations are valid when j = m — 1 since in this case D'+l = Dm is

expressible as a linear combination of lower powers of D.

3. Necessity for characteristic zero. In this section P will designate

a field of characteristic 0 and V will be a vector space over F with two

linear transformations, D and T, satisfying [P, D] —I. Moreover it is

assumed that Fis locally algebraic with respect to D. Again the prob-

lem is reduced to the primary case by Lemmas 1 and 2, but it is

necessary to show that the primary components of V are invariant

under P before the reduction can be made.

Lemma 4. Let T, D be linear transformations of V satisfying [T, D]

= 1. For any polynomial /(X) in P[X] =A

TDk = DkT + kDk~\

(5)
TfiD) =fiD)T+f'iD)

where /'(X) designates the usual derivative o//(X). Furthermore, if Vp

is a primary component of V irelative to D) then Vp is T-invariant.

The first relation in (5) is readily established by induction and the

second is an immediate consequence thereof. To see that Vv is P

invariant observe first that Vp is P-invariant. Then for any xG^j>

let xipiD))r = 0 and note ixT)ipiD)y = xipiD))'T+xipiD)')'

= xipiD)yT+rxipiD))T-lp'iD)=rxipiD))r-lp'iD) which lies in Vp

since Vp is P-invariant.

For the remainder of this section it is assumed that V is a primary

^4-module such that [P, D]=I. Define the subspaces Vk by (1)

again. Then the following lemma holds [3].

Lemma 5. // every y in V\ has the property that for each integer

fe^l, there is an x in V with y = x(p(P))* then V is divisible.

To simplify the following calculations, the notation xf, xTf, Tkf,

etc., is used in lieu of x/(P), xTfiD), TkfiD), etc. There are several

steps which culminate with the verification of the hypothesis of

Lemma 5. These steps are listed below where (/, g) = 1 signifies as

usual that the polynomials/(X) and g(X) are relatively prime.

(a) If (f, p) = l and yEV there is an xG V with y = xf. For if
yEVk write fg + hpk = 1 so that yfg+ypkh = y; the desired conclusion

follows with the choice x=yg.

(b) If yG Vk, yf = zpn where if, p) = l then there is an xG V with

y=xpn. Again write fg+pkh = l so that zgpn = zpng = ygf = y[l—pkh]

= y—ypkh = y. For the choice x = zg the conclusion xpn = y follows.
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(c) An easy induction establishes the commutattvity relation

™ ( m\
Tmf=Y[      )fk)Tm-k

k-o \ k /

where f{h) designates the £th derivative of /.

(d) The following known result is easily established by induction.

(/,»)(*> = n(n-l) ■ ■ ■ (n- kA- l)p"-k(p')"

+ P"-k+lfk(P, P',- ■ ■ , Pm)

where fk(p, p', ■ ■ ■ , p^k)) is an integral polynomial in p, p', • ■ • , p(k).

(e) For each y in Fi there is x in V with y = xp". For let z = yTn

and compute

zp" = yTnpn = y Y (      ) (Pn)(k)Tn~k

k=o\k /

by (c). By (d) above

y(Pn)m = y[*i(^)p-W + Pn~k+1fk(P, P',- ■■, />(4))] = o

for k<n since yp = 0. Thus

zp'' = y(p»)™ = y[n\(p')» + pfn(p, p', • • • , pM)] = y[nl(p')"].

Since the field is of characteristic 0, the irreducibility of />(X) ensures

(p> P') = l'< a's0 w!?^0 in F and so (n\p', p) = l and the conclusion fol-

lows immediately from (b). The hypothesis of Lemma 5 has been

established and the proof of Theorem 2 is complete.

A counterexample for finite characteristic is readily given. For

example if F = G¥(3) and V has basis Xi, x2, x3 over F define T by

XiP = X2, X2P = X3, X3P = 0 and D by XiP=0, X2-D = Xi and X3.D = 2x2.

An easy check shows TD — DT = I and D is surely singular. It is clear

that if V were divisible as an ^4-module, D would have to map Fonto

itself and so V cannot be divisible. Closely related to these results is

a result of Albert and Muckenhoupt [l] which states that if S is a

linear transformation of the finite dimensional vector space F over F

it is a commutator, i.e., S= TU— UT for linear transformations U,

T oi V ii and only if Trace 5 = 0.

4. Results of Mikusinski and Geer. In [2] Mr. Geer gave a gen-

eralization of Mikusinski's result. Using Theorem 1 it is easy to prove

a result which includes both of their results and is stated as
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Theorem 3. Let Dbea locally algebraic linear operator on V satisfying

(i) for each irreducible p(\) in A the kernel of piD) is finite dimen-

sional,

(ii) for each irreducible pi}/), dim ker />n = w(dim ker p). Then a

linear operator T on V exists with [T, D] =7.

The only hypothesis of Theorem 1 that must be verified is the

divisibility condition and by Lemmas 1 and 2 it suffices to verify

this condition for each primary component of F. Obviously the

restriction of D to a primary component also satisfies (i) and (ii) and

so it may be assumed that V is primary for some prime p = pi/K).

The subspaces Vk are again defined by (1) so that Vk+ipEVk and

the kernel of piD)\ Vk+i is clearly Fi so Fi+i/Fi is A -isomorphic to

Vkp. Thus dim Vk+i — dim Fi = dim Vk+i p but by (ii) dim Vk+i

= (fe + l)(dim Fi) and so dim Vk+ip = kidim V/) which is dim Vk by

(ii). Therefore, Vk+ipEVk together with the dimension count given

shows Vk+ip = Vk and the condition of Lemma 5 is verified and F is

divisible as desired.

For completeness the converse of Mikusinski is deduced from

Theorem 2 in the following form.

Theorem 4. Let D be a linear operator on the vector space V over the

field F of characteristic 0 such that D is locally algebraic on V. Suppose

that for each irreducible p(K) in A = p[X], dim ker p is finite and sup-

pose that a linear operator T of V exists with [T, D] =1, then condition

II is satisfied and dim Ker/(P) is finite for every /(X) of positive degree.

By Theorem 2, F must be a divisible A -module and so is each pri-

mary component of V by Lemmas 1 and 2. If 5 is a primary com-

ponent, let 5i = Ker pk so that the divisibility property of 5 ensures

Sk+ip = Sk. Since Ker piD)\ Sk+i = Si the isomorphism theorem yields

Sk+i/Si ^4-isomorphic to Sk+ip = Sk. Thus dim S*+i = dim -Sfc+dim 5i

and dim Si is finite by hypothesis; an obvious induction argument

establishes dim 5i+i=(fe + l) dim 5i = (fe + l) dim Ker p as desired.

Next, observe that if /(X), g(X) are relatively prime then Ker fg

= Ker /+Ker g. For surely Ker /+Ker gCKer fg holds; conse-

quently, write l=fh+gk for h, k in A so that x in Ker/g can be

written as x = xfh+xgk where x/ZzGKer g and xgfeGKer/ is obvious.

This shows Ker /+ Ker g = Ker fg; finally if xG(Ker/)P\(Ker g) then

x = xfh+xgk = 0 and so the sum is direct. The desired conclusion is

now an obvious consequence of the preceding results and the unique

factorization in A.
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