A GENERALIZATION OF A COMMUTATOR THEOREM OF MIKUSINSKI

E. C. PAIGE

- 1. **Introduction.** In a series of papers [4]–[6] Mikusinski and Sikorski considered the following problem. Let V be a vector space over a field of characteristic 0 and let D be a locally algebraic linear transformation of V (i.e., given any x in V there is a polynomial $f(\lambda) \neq 0$ over F with xf(D)=0). If $A=F[\lambda]$ is the polynomial ring in one variable over F, V becomes an A-module under the definition $xf(\lambda)=xf(D)$ for x in V, $f(\lambda)$ in A. The Mikusinski-Sikorski hypotheses on V and D can be phrased as follows.
- I. If $f(\lambda) \in A$ has degree $n \ge 1$, the kernel of f(D) has dimension $\le n$. II. If $f(\lambda)$, $g(\lambda)$ in A have positive degrees and if the dimensions of Ker f(D) and Ker g(D) are m and n respectively, the dimension of Ker f(D)g(D) is m+n.

Mikusinski and Sikorski [5], [6] then proved the

THEOREM. If D is a locally algebraic linear transformation of V satisfying I and II, there is a linear transformation T of V with TD-DT=I, the identity transformation of V.

Mikusinski [4] also demonstrated a converse; namely he proved the

THEOREM. If D is a locally algebraic linear transformation of V satisfying condition I and if there is a linear transformation T of V with TD-DT=I then condition II is satisfied.

The generalizations treated in this paper may be formulated as follows. Let D be a locally algebraic linear transformation of V; instead of the conditions listed above, the assumption will be

III. V is a divisible A-module (i.e., given y in V and $f(\lambda) \neq 0$ in $A = F[\lambda]$ there is an x in V with $xf(\lambda) = xf(D) = y$).

The first theorem may be stated as

Theorem 1. If D is a locally algebraic linear transformation of V satisfying condition III, then a linear transformation, T, of V exists with TD-DT=I.

The converse result established is

THEOREM 2. If D is a locally algebraic linear transformation on V

Received by the editors April 11, 1966.

over F of characteristic 0 and if a linear transformation, T, of V exists with TD-DT=I, then condition III is satisfied.

The characteristic 0 hypothesis cannot be omitted in Theorem 2 as will be shown by an example due to A. A. Albert. It will be shown that these results imply a generalization of the Mikusinski-Sikorski results and that this generalization implies one obtained by Mr. James Geer in a Master's thesis [2] at the University of Virginia. The author expresses his appreciation to Professor M. Rosenblum for calling this problem to his attention.

2. Sufficiency of the condition III. As usual the A-module V will be termed a primary A-module if there is an irreducible element $p = p(\lambda)$ of A such that every element of V is in the kernel of $(p(D))^k$ for some k. The following lemmas are well known [3] but are included for convenience.

Lemma 1. If D is a locally algebraic linear transformation of V, then V is the (weak) direct sum of primary A-modules.

LEMMA 2. A direct sum of A-modules is divisible if and only if each summand is divisible.

Now if V_p is a primary component of V and if T_p is a linear transformation on V_p satisfying $[T_p, D] = T_p D - DT_p = I$ on V_p , then the direct sum $T = \sum_p T_p$ of the T_p for p ranging over the irreducible polynomials of A clearly satisfies [T, D] = I on V.

The previous remark and Lemmas 1 and 2 clearly reduce the problem to the case in which V is a primary divisible A-module for the prime p of A, and this hypothesis is maintained for the remainder of this section.

For each integer $k \ge 1$ let

(1)
$$V_k = \{x \in V : x(p(D))^k = 0\}$$

so that V_k is the kernel of $(p(D))^k$, is an A-submodule of V (i.e., is a D-invariant subspace of V), and satisfies $V_k \subseteq V_{k+1}$, $V_{k+1}(p(D)) \subset V_k$, and $\bigcup_{k=1}^{\infty} V_k = V$.

LEMMA 3. If V is a primary divisible A-module for the prime polynomial $p(\lambda)$ of degree $m \ge 1$, there is a basis $\{x(\alpha, k)D^j\}_{\alpha,j,k}$ of V where α ranges over some index set, and $0 \le j \le m-1$ and $k \ge 1$ is an integer.

Since xp = xp(D) = 0 for all $x \in V_1$, V_1 is a vector space over the field $K = F[\lambda]/(p(\lambda))$ and as such has a basis $\{x_{\alpha}\}_{\alpha}$ over K. Now 1, $\lambda, \dots, \lambda^{m+1}$ modulo $p(\lambda)$ form a basis for K over F and so well known

vector space arguments show $\{x_{\alpha}\lambda^{j}\}_{\alpha,j}$ to be a basis of V_{1} over F. Now $x_{\alpha}\lambda^{j}=x_{\alpha}D^{j}$ and so $\{x_{\alpha}D^{j}\}_{\alpha,j}$ is a basis of V_{1} over F. To simplify the notation write $x_{\alpha}=x(\alpha, 1)$ and choose inductively (by the divisibility hypothesis) $x(\alpha, k+1)$ in V_{k+1} with $x(\alpha, k+1)p(D)=x(\alpha, k)$.

The vectors $\{x(\alpha, k)D^j\}_{\alpha,j,k}$ are linearly independent over F. For if

(2)
$$\sum_{\alpha} \sum_{k=1}^{n+1} \sum_{j=0}^{m-1} \beta(\alpha, k, j) x(\alpha, k) D^{j} = 0$$

apply $p(D)^n$ to (2) to obtain

(3)
$$\sum_{\alpha} \sum_{j=0}^{m-1} \beta(\alpha, n+1, j) x(\alpha, 1) D^{j} = 0.$$

By the choice of $x(\alpha, 1)$, relation (3) yields $\beta(\alpha, n+1, j) = 0$ and an obvious induction establishes that all $\beta(\alpha, k, j) = 0$. To see that the chosen vectors span V, the argument proceeds from V_k to V_{k+1} . In order to avoid an excessive amount of notation the step from V_1 to V_2 will be indicated. If $x \in V_2$, $xp \in V_1$ so that $xp = \sum_{\alpha,j} \beta(\alpha,j) x(\alpha,1) D^j$; let $y = \sum_{\alpha,j} \beta(\alpha,j) x(\alpha,2) D^j$ and observe that z = x - y lies in V_1 since yp = xp. Thus $z = \sum_{\alpha,j} \gamma(\alpha,j) x(\alpha,1) D^j$ and $x = y + z = \sum_{\alpha,j} \beta(\alpha,j) x(\alpha,2) D^j + \sum_{\alpha,j} \gamma(\alpha,j) x(\alpha,1) D^j$.

To conclude the proof of Theorem 1, T is explicitly constructed in terms of the basis $\{x(\alpha, k)D^j\}$ of Lemma 3. Define

$$x(\alpha, k)T = x(\alpha, k + 1),$$

$$x(\alpha, k)DT = x(\alpha, k + 1)D - x(\alpha, k),$$

$$(4) x(\alpha, k)D^{2}T = x(\alpha, k + 1)D^{2} - 2x(\alpha, k)D,$$

$$\vdots$$

$$x(\alpha, k)D^{m-1}T = x(\alpha, k + 1)D^{m-1} - (m - 1)x(\alpha, k)D^{m-2}.$$

It only remains to establish [T, D] = I. The calculation is as follows:

$$x(\alpha, k) D^{j}TD = [x(\alpha, k + 1) D^{j} - jx(\alpha, k) D^{j-1}]D$$

= $x(\alpha, k + 1) D^{j+1} - jx(\alpha, k) D^{j}$

and

$$x(\alpha, k)D^{j}(DT) = x(\alpha, k+1)D^{j+1} - (j+1)x(\alpha, k)D^{j}.$$

Upon differencing these two results one obtains

$$x(\alpha, k) D^{j}(TD - DT) = x(\alpha, k) D^{j}$$

which is exactly the desired result. It should be remarked that these

calculations are valid when j=m-1 since in this case $D^{j+1}=D^m$ is expressible as a linear combination of lower powers of D.

3. Necessity for characteristic zero. In this section F will designate a field of *characteristic* 0 and V will be a vector space over F with two linear transformations, D and T, satisfying [T, D] = I. Moreover it is assumed that V is locally algebraic with respect to D. Again the problem is reduced to the primary case by Lemmas 1 and 2, but it is necessary to show that the primary components of V are invariant under T before the reduction can be made.

LEMMA 4. Let T, D be linear transformations of V satisfying [T, D] = I. For any polynomial $f(\lambda)$ in $F[\lambda] = A$

(5)
$$TD^{k} = D^{k}T + kD^{k-1},$$
$$Tf(D) = f(D)T + f'(D)$$

where $f'(\lambda)$ designates the usual derivative of $f(\lambda)$. Furthermore, if V_p is a primary component of V (relative to D) then V_p is T-invariant.

The first relation in (5) is readily established by induction and the second is an immediate consequence thereof. To see that V_p is T invariant observe first that V_p is D-invariant. Then for any $x \in V_p$ let $x(p(D))^r = 0$ and note $(xT)(p(D))^r = x(p(D))^r T + x(p(D)^r)' = x(p(D))^r T + rx(p(D))^{r-1}p'(D) = rx(p(D))^{r-1}p'(D)$ which lies in V_p since V_p is D-invariant.

For the remainder of this section it is assumed that V is a primary A-module such that [T, D] = I. Define the subspaces V_k by (1) again. Then the following lemma holds [3].

LEMMA 5. If every y in V_1 has the property that for each integer $k \ge 1$, there is an x in V with $y = x(p(D))^k$ then V is divisible.

To simplify the following calculations, the notation xf, xTf, T^kf , etc., is used in lieu of xf(D), xTf(D), $T^kf(D)$, etc. There are several steps which culminate with the verification of the hypothesis of Lemma 5. These steps are listed below where (f, g) = 1 signifies as usual that the polynomials $f(\lambda)$ and $g(\lambda)$ are relatively prime.

- (a) If (f, p) = 1 and $y \in V$ there is an $x \in V$ with y = xf. For if $y \in V_k$ write $fg + hp^k = 1$ so that $yfg + yp^kh = y$; the desired conclusion follows with the choice x = yg.
- (b) If $y \in V_k$, $yf = zp^n$ where (f, p) = 1 then there is an $x \in V$ with $y = xp^n$. Again write $fg + p^kh = 1$ so that $zgp^n = zp^ng = ygf = y[1 p^kh] = y yp^kh = y$. For the choice x = zg the conclusion $xp^n = y$ follows.

(c) An easy induction establishes the commutativity relation

$$T^m f = \sum_{k=0}^m \binom{m}{k} f^{(k)} T^{m-k}$$

where $f^{(k)}$ designates the kth derivative of f.

(d) The following known result is easily established by induction.

$$(p^n)^{(k)} = n(n-1) \cdot \cdot \cdot (n-k+1)p^{n-k}(p')^k + p^{n-k+1}f_k(p, p', \cdots, p^{(k)})$$

where $f_k(p, p', \dots, p^{(k)})$ is an integral polynomial in $p, p', \dots, p^{(k)}$.

(e) For each y in V_1 there is x in V with $y = xp^n$. For let $z = yT^n$ and compute

$$zp^n = yT^np^n = y\sum_{k=0}^n \binom{n}{k} (p^n)^{(k)}T^{n-k}$$

by (c). By (d) above

$$y(p^{n})^{(k)} = y \left[k! \binom{n}{k} p^{n-k} (p')^{k} + p^{n-k+1} f_{k}(p, p', \dots, p^{(k)}) \right] = 0$$

for k < n since yp = 0. Thus

$$zp^{n} = y(p^{n})^{(n)} = y[n!(p')^{n} + pf_{n}(p, p', \dots, p^{(n)})] = y[n!(p')^{n}].$$

Since the field is of characteristic 0, the irreducibility of $p(\lambda)$ ensures (p, p') = 1; also $n! \neq 0$ in F and so (n!p', p) = 1 and the conclusion follows immediately from (b). The hypothesis of Lemma 5 has been established and the proof of Theorem 2 is complete.

A counterexample for finite characteristic is readily given. For example if F = GF(3) and V has basis x_1 , x_2 , x_3 over F define T by $x_1T = x_2$, $x_2T = x_3$, $x_3T = 0$ and D by $x_1D = 0$, $x_2D = x_1$ and $x_3D = 2x_2$. An easy check shows TD - DT = I and D is surely singular. It is clear that if V were divisible as an A-module, D would have to map V onto itself and so V cannot be divisible. Closely related to these results is a result of Albert and Muckenhoupt [1] which states that if S is a linear transformation of the finite dimensional vector space V over F it is a commutator, i.e., S = TU - UT for linear transformations U, T of V if and only if Trace S = 0.

4. Results of Mikusinski and Geer. In [2] Mr. Geer gave a generalization of Mikusinski's result. Using Theorem 1 it is easy to prove a result which includes both of their results and is stated as

Theorem 3. Let D be a locally algebraic linear operator on V satisfying (i) for each irreducible $p(\lambda)$ in A the kernel of p(D) is finite dimensional,

(ii) for each irreducible $p(\lambda)$, dim ker $p^n = n(\dim \ker p)$. Then a linear operator T on V exists with [T, D] = I.

The only hypothesis of Theorem 1 that must be verified is the divisibility condition and by Lemmas 1 and 2 it suffices to verify this condition for each primary component of V. Obviously the restriction of D to a primary component also satisfies (i) and (ii) and so it may be assumed that V is primary for some prime $p = p(\lambda)$. The subspaces V_k are again defined by (1) so that $V_{k+1}p \subset V_k$ and the kernel of $p(D) \mid V_{k+1}$ is clearly V_1 so V_{k+1}/V_1 is A-isomorphic to V_kp . Thus dim V_{k+1} -dim V_1 =dim V_{k+1} p but by (ii) dim V_{k+1} =(k+1)(dim V_1) and so dim $V_{k+1}p = k$ (dim V_1) which is dim V_k by (ii). Therefore, $V_{k+1}p \subset V_k$ together with the dimension count given shows $V_{k+1}p = V_k$ and the condition of Lemma 5 is verified and V is divisible as desired.

For completeness the converse of Mikusinski is deduced from Theorem 2 in the following form.

THEOREM 4. Let D be a linear operator on the vector space V over the field F of characteristic 0 such that D is locally algebraic on V. Suppose that for each irreducible $p(\lambda)$ in $A = F[\lambda]$, dim ker p is finite and suppose that a linear operator T of V exists with [T, D] = I, then condition II is satisfied and dim Ker f(D) is finite for every $f(\lambda)$ of positive degree.

By Theorem 2, V must be a divisible A-module and so is each primary component of V by Lemmas 1 and 2. If S is a primary component, let $S_k = \operatorname{Ker} p^k$ so that the divisibility property of S ensures $S_{k+1}p = S_k$. Since $\operatorname{Ker} p(D) \mid S_{k+1} = S_1$ the isomorphism theorem yields S_{k+1}/S_1 A-isomorphic to $S_{k+1}p = S_k$. Thus dim $S_{k+1} = \dim S_k + \dim S_1$ and dim S_1 is finite by hypothesis; an obvious induction argument establishes dim $S_{k+1} = (k+1) \dim S_1 = (k+1) \dim \operatorname{Ker} p$ as desired. Next, observe that if $f(\lambda)$, $g(\lambda)$ are relatively prime then $\operatorname{Ker} fg = \operatorname{Ker} f + \operatorname{Ker} g$. For surely $\operatorname{Ker} f + \operatorname{Ker} g \subset \operatorname{Ker} fg$ holds; consequently, write 1 = fh + gk for h, k in A so that x in $\operatorname{Ker} fg$ can be written as x = xfh + xgk where $xfh \in \operatorname{Ker} g$ and $xgk \in \operatorname{Ker} f$ is obvious. This shows $\operatorname{Ker} f + \operatorname{Ker} g = \operatorname{Ker} fg$; finally if $x \in (\operatorname{Ker} f) \cap (\operatorname{Ker} g)$ then x = xfh + xgk = 0 and so the sum is direct. The desired conclusion is now an obvious consequence of the preceding results and the unique factorization in A.

REFERENCES

- 1. A. Albert, and F. Muckenhoupt, On matrices of trace 0, Michigan Math. J. 4 (1957), 1-3.
- 2. James Geer, An extension of Mikusinski's algebraic theory of differential equations, Masters Thesis, Univ. of Virginia, Charlottesville, 1964.
- 3. I. Kaplansky, Infinite Abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1965.
- 4. J. Mikusinski, Sur les solutions lineairement independantes des equations differentielles a coefficients constants, Studia Math. 16 (1957), 41-47.
 - 5. ——, Sur l'espace lineaire avec derivation, Studia Math. 16 (1957), 113-123.
- 6. R. Sikorski, On Mikusinski's algebraical theory of differential equations, Studia Math. 16 (1957), 230-36.

University of Virginia