A GENERALIZATION OF A COMMUTATOR
THEOREM OF MIKUSINSKI

E. C. PAIGE

1. Introduction. In a series of papers [4]-[6] Mikusinski and Sikor-
ski considered the following problem. Let V be a vector space over a
field of characteristic 0 and let D be a locally algebraic linear trans-
formation of V (i.e., given any x in V there is a polynomial f(A) =0
over F with xf(D)=0). If A=F[\] is the polynomial ring in one
variable over F, V becomes an A-module under the definition
xf(\) =xf(D) for x in V, f(\) in A. The Mikusinski-Sikorski hypothe-
ses on V and D can be phrased as follows.

I. If f(\) €A has degree n= 1, the kernel of f(D) has dimension <.

I1. If f(\), g(\) in A have positive degrees and if the dimensions
of Ker f(D) and Ker g(D) are m and n respectively, the dimension of
Ker f(D)g(D) is m+mn.

Mikusinski and Sikorski [5], [6] then proved the

THEOREM. If D s a locally algebraic linear transformation of V
satisfying 1 and 11, there is a linear transformation T of V with TD—
DT =1, the identity transformation of V.

Mikusinski [4] also demonstrated a converse; namely he proved
the

THEOREM. If D s a locally algebraic linear tramsformation of V
satisfying condition 1 and if there is a linear iransformation T of V
with TD—DT =1 then condition 11 is satisfied.

The generalizations treated in this paper may be formulated as
follows. Let D be a locally algebraic linear transformation of V; in-
stead of the conditions listed above, the assumption will be

III. V is a divisible A-module (i.e., given y in V and f(\) %0 in
A =F[\] there is an x in V with xf(A\) =xf(D) =y).

The first theorem may be stated as

THEOREM 1. If D is a locally algebraic linear transformation of V
satisfying condition 111, then a linear transformation, T, of V exists
with TD—DT=1.

The converse result established is

THEOREM 2. If D is a locally algebraic linear transformation on V
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over F of characteristic 0 and if a linear transformation, T, of V exists
with TD—DT =1, then condition 111 s satisfied.

The characteristic 0 hypothesis cannot be omitted in Theorem 2
as will be shown by an example due to A. A. Albert. It will be shown
that these results imply a generalization of the Mikusinski-Sikorski
results and that this generalization implies one obtained by Mr.
James Geer in a Master’s thesis [2] at the University of Virginia.
The author expresses his appreciation to Professor M. Rosenblum for
calling this problem to his attention.

2. Sufficiency of the condition III. As usual the A-module V will be
termed a primary 4-module if there is an irreducible element p =p(\)
of A such that every element of V is in the kernel of (p(D))* for
some k. The following lemmas are well known [3] but are included
for convenience.

LeMmMA 1. If D s a locally algebraic linear transformation of V, then
V is the (weak) direct sum of primary A-modules.

LeEMMA 2. A direct sum of A-modules is divisible if and only if each
summand is divisible.

Now if V, is a primary component of V and if T, is a linear trans-
formation on V, satisfying [T, D]=T,D—DT,=1 on V,, then the
direct sum T= ), T, of the T, for p ranging over the irreducible
polynomials of 4 clearly satisfies [T, D]=7 on V.

The previous remark and Lemmas 1 and 2 clearly reduce the prob-
lem to the case in which V is a primary divisible A-module for the
prime p of A, and this hypothesis is maintained for the remainder of
this section.

For each integer k=1 let

1) Ve = {x € V: x(p(D))* = 0}
so that V; is the kernel of (p(D))*, is an A-submodule of V (i.e., is a

D-invariant subspace of V), and satisfies ViC Vi1, Vin(p(D)) C Ve,
and Uy, Vi=V.

LemMA 3. If V is a primary divisible A-module for the prime poly-
nomial p(\) of degree m=1, there is a basts {x(a, k)D"}a,,-,k of V where
o ranges over some index set, and 0=j<m—1 and k=1 is an integer.

Since xp=xp(D)=0 for all x& 1V, V; is a vector space over the
field K = F[\]/(p(\)) and as such has a basis {xa}a over K. Now 1,
N\, - - -, AT modulo p(N) form a basis for K over F and so well known



1966} COMMUTATOR THEOREM OF MIKUSINSKI 1419

vector space arguments show {xa i} 4.; to be a basis of V; over F.
Now xe\ =x,D7 and so {an"} «,j 18 a basis of V; over F. To simplify
the notation write x, =x(e, 1) and choose inductively (by the divisi-
bility hypothesis) x(a, k+1) in Vi with x(a, k+1)p(D) =x(e, k).

The vectors {x(a, k) D7}, ; are linearly independent over F. For if

n+1l m—1

() 22 2 Bla, b, )x(a, DI =0

a k=1 j=0

apply p(D)" to (2) to obtain

3 >3 Blayn + 1, j)x(a, 1) DF = 0,

a j=0

By the choice of x(a, 1), relation (3) yields B(a, #+1, j) =0 and an
obvious induction establishes that all B(a, &, j)=0. To see that
the chosen vectors span V, the argument proceeds from Vi to Vi,.
In order to avoid an excessive amount of notation the step from V; to
Vawill beindicated. If x € Vy, xp E Vyso thatxp = Z..,,«ﬁ(a,j)x(a, 1) D7,
let y=>.; Bla, j)x(a, 2)Di and observe that z=x—y lies in
Vy since yp=xp. Thus z= D .;v(e, Hx(e, 1)Di and x=y+z
= 2 Bla, Dxle, 2)Di+ 2o, v(e, f)x(a, 1)Di,

To conclude the proof of Theorem 1, T is explicitly constructed in
terms of the basis {x(a, #)D’} of Lemma 3. Define

2(a, )T = x(a, k + 1),
x(a, ) DT = x(a, k + 1) D — x(a, k),
4 *(a, k) DT = x(a, k + 1) D? — 2x(a, k) D,

w(a, B)D™T = w(a, k + 1) D™t — (m — 1)x(a, &) D™,

It only remains to establish [T, D]=1I. The calculation is as follows:
x(e, k) D'TD = [x(a, # + 1) D/ — jx(a, k) D] D
= x(a, k + 1) Di*' — ju(a, k) Di

and

2(c, B) DI(DT) = x(a, k + 1) D — (5 + 1)2(e, &) DV,
Upon differencing these two results one obtains

(@, B) DTD — DT) = x(a, k) D

which is exactly the desired result. It should be remarked that these
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calculations are valid when j=m—1 since in this case D#*'=Dn is
expressible as a linear combination of lower powers of D.

3. Necessity for characteristic zero. In this section F will designate
a field of characteristic 0 and V will be a vector space over F with two
linear transformations, D and T, satisfying [T, D] =1I. Moreover it is
assumed that Vis locally algebraic with respect to D. Again the prob-
lem is reduced to the primary case by Lemmas 1 and 2, but it is
necessary to show that the primary components of V" are invariant
under T before the reduction can be made.

LEMMA 4. Let T, D be linear transformations of V satisfying [T, D]
=1. For any polynomial f(\) in F[\]=A4

TD* = DT + kDY,
Tf(D) = f(D)T + f'(D)

where f'(N) designates the usual derivative of f(\). Furthermore, if V,
is a primary component of V (relative to D) then V, is T-invariant.

®)

The first relation in (5) is readily established by induction and the
second is an immediate consequence thereof. To see that V, is T
invariant observe first that V, is D-invariant. Then for any x&V,
let x(p(D))’=0 and note (x1)(p(D)) =x(p(D)) T+x(p(D))
=x(p(D)) THrx(p(D))—'p'(D) =rx(p(D))~'p'(D) which lies in V,
since V, is D-invariant.

For the remainder of this section it is assumed that V is a primary
A-module such that [T, D]=1I. Define the subspaces V. by (1)
again. Then the following lemma holds [3].

LEMMA 5. If every vy in Vi has the property that for each integer
k=1, there is an x in V with y=x(p(D))* then V 1is divisible.

To simplify the following calculations, the notation xf, x7f, T*f,
etc., is used in lieu of xf(D), xTf(D), T*(D), etc. There are several
steps which culminate with the verification of the hypothesis of
Lemma 5. These steps are listed below where (f, g) =1 signifies as
usual that the polynomials f(A) and g(\) are relatively prime.

(a) If (f, p)=1 and yEV there is an x&V with y=xf. For if
yE Vy write fg+hp* =1 so that yfg+yp*h=1y; the desired conclusion
follows with the choice x =yg.

(b) If yE Vi, yf=2zp™ where (f, p) =1 then there is an x& I with
y=xp". Again write fg+p*h=1 so that zgp"=zprg=1ygf =y[1 — p*h]
=y—yp*h=1y. For the choice x =2g the conclusion xp" =1y follows.
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(c) An easy induction establishes the commutativity relation
Zfm
If= Z( )f("’T"‘"‘
k=0 \ &

where f® designates the kth derivative of f.
(d) The following known result is easily established by induction.

(B0 = nGu = 1) - - (u = b+ DpH(H)"
+ pn—k+lfk(p’ P,, ] P(k))

where fi(p, p’, - + -, p'®) is an integral polynomial in p, p’, - - -, p®,
(e) For each y in V; there is x in V with y=xp". For let z=yT"
and compute

an — ,'VT"P" =y i ( n) (Pn) (k)Tn—k
—o \ B
by (c). By (d) above
s ® =3[ 1(} ) 0 + e, o) | = 0

for k<n since yp=0. Thus
2p"=y(p") P =y[nl(p)" + pfalp, ', - - -, p™)] = y[nl(p")].

Since the field is of characteristic 0, the irreducibility of p(\) ensures
(p, p')=1;also n!£0 in F and so (n!p’, p) =1 and the conclusion fol-
lows immediately from (b). The hypothesis of Lemma 5 has been
established and the proof of Theorem 2 is complete.

A counterexample for finite characteristic is readily given. For
example if F=GF(3) and V has basis xi, x2, x3 over F define T by
01T =xs, 2T =x3, 37 =0 and D by x;D=0, x;D=x; and x3D = 2x,.
An easy check shows TD—DT =T and D is surely singular. It is clear
that if V were divisible as an 4-module, D would have to map ¥ onto
itself and so V cannot be divisible. Closely related to these results is
a result of Albert and Muckenhoupt [1] which states that if S is a
linear transformation of the finite dimensional vector space V over F
it is a commutator, i.e., S=TU— UT for linear transformations U,
T of V if and only if Trace S=0.

4. Results of Mikusinski and Geer. In [2] Mr. Geer gave a gen-
eralization of Mikusinski's result. Using Theorem 1 it is easy to prove
a result which includes both of their results and is stated as
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THEOREM 3. Let D be a locally algebraic linear operator on V satisfying

(i) for each irreducible p(N\) in A the kernel of p(D) is finite dimen-
sional,

(1) for each irreducible p(\), dim ker p"=n(dim ker p). Then a
linear operator T on V exists with [T, D] =1.

The only hypothesis of Theorem 1 that must be verified is the
divisibility condition and by Lemmas 1 and 2 it suffices to verify
this condition for each primary component of V. Obviously the
restriction of D to a primary component also satisfies (i) and (ii) and
so it may be assumed that V is primary for some prime p=p(A).
The subspaces V, are again defined by (1) so that Vinp C Vi and
the kernel of p(D)| Viq is clearly Vi so Viyi/ Vi is A-isomorphic to
Vip. Thus dim Vi —dim Vi=dim Vi p but by (i) dim Vi
=(k+1)(dim V;) and so dim Vigap=*k(dim Vi) which is dim V; by
(ii). Therefore, Viip C Vi together with the dimension count given
shows Viup=V; and the condition of Lemma 5 is verified and V is
divisible as desired.

For completeness the converse of Mikusinski is deduced from
Theorem 2 in the following form.

THEOREM 4. Let D be a linear operator on the vector space V over the
field F of characteristic O such that D is locally algebraic on V. Suppose
that for each irreducible p(\) in A = F[\], dim ker p is finite and sup-
pose that a linear operator T of V exists with [T, D) =1, then condition
11 s satisfied and dim Ker f(D) s finite for every f(N) of positive degree.

By Theorem 2, V must be a divisible A-module and so is each pri-
mary component of V' by Lemmas 1 and 2. If S is a primary com-
ponent, let S,=Ker p* so that the divisibility property of S ensures
Si1p = Sk. Since Ker p(D) | Si+1=2S; the isomorphism theorem yields
Sit1/S1 A-isomorphic to Skpip=Sk. Thus dim Siyy=dim Si4dim S;
and dim S; is finite by hypothesis; an obvious induction argument
establishes dim Si;1=(k+1) dim S;=(k+1) dim Ker p as desired.
Next, observe that if f(A\), g(\) are relatively prime then Ker fg
=Ker f+Ker g. For surely Ker f4+Ker gCKer fg holds; conse-
quently, write 1=fh+gk for h, k in A so that x in Ker fg can be
written as x =xfh+xgk where xfhEKer g and xgkEKer f is obvious.
This shows Ker f+Ker g =Ker fg; finally if x & (Ker f)N\(Ker g) then
x=xfh+xgk=0 and so the sum is direct. The desired conclusion is
now an obvious consequence of the preceding results and the unique
factorization in 4.
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