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1. Introduction and formulation of result. One of the classical

formulations of the problem of Plateau is as follows:

Given a Jordan curve Y in n-dimensional Euclidean space E" (n^3),

determine a real vector function X(u, v) =(xi(w, v), • • • , xn(u, v)), de-

fined for u2+v2 ^ 1, with the properties:

(a) X(u, v) is continuous for u2+v2 g 1 and harmonic for u2+v2 < 1;

(h) E = G, F = 0 in u2+v2<l, where E = XU-XU, F=XU-XV,

G = XV-Xv (the subscripts denoting partial differentiation);

(c) by the equation X = X(u, v) (X position vector with respect to

some cartesian coordinate system in E") the circle u2+v2 = l is mapped

topologically onto Y.

If the conditions (a), (b), (c) are satisfied by the function X(u, v),

the surface S, given by the equation X = X(u, v), m2+d2<1, is called

a generalized minimal surface of the type of the disc, bounded by Y.

A singular point of the surface 5, i.e. a point where EG—F2 = 0, and

hence Xu = Xv = 0, is called a branch point of order m of the minimal

surface, if all the partial derivatives of X(u, v) with respect to u

and v vanish at this point up to and including the order mSi 1, while

at least one of the derivatives of order m + 1 is different from the zero

vector. It is easy to see that the branch points must be isolated. The

classical solutions of Plateau's problem leave the question open

whether, for a given Jordan curve Y, there is always a generalized

minimal surface of the type of the disc, bounded by Y, which is free

of branch points. Therefore statements are of interest, which give

information about the possibly existing branch points of any general-

ized minimal surface of the type of the disc, bounded by a Jordan

curve r, as soon as certain geometric properties of Y are known. In

this sense we have:

Theorem. Let Y be a Jordan curve with total curvature k(Y) in En.

If a generalized minimal surface of the type of the disc, bounded by Y, has

branch points (uit vi) (with uj+v^<l), ltiitsk, of orders mi respec-

tively, then

,    L V <   K(r)
i + 2-, m< t\ —— •
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Especially, there cannot be a branch point if k(F)<47t; and there are

only finitely many branch points, if k(Y) is finite.

For an analytic Jordan curve this inequality (in a somewhat more

general form) is due to Sasaki [6] (compare J. C. C. Nitsche [2],

[3, p. 236]). Nitsche [3, p. 236] has asked for statements about the

general case. In the following we shall use an argument of Rado [4]

to prove the theorem for arbitrary Jordan curves, thus giving a par-

tial answer to one of Nitsche's problems on minimal surfaces (Prob-

lem 27 in [3, p. 258]). The total curvature k(Y) of a closed curve Y

is defined in the general case, according to Milnor [l], by k(Y)

= sup { k(II) }, where the supremum is taken over all closed polygons

inscribed in Y, and where k(LT) for a closed polygon II is defined as the

sum of its exterior angles. (For closed curves of class C" this defini-

tion leads to the usual total curvature /r| X"(s) | ds (s arc length).)

2. Proof of the theorem. Let K = {(u, v); u2+v2 < 1}, let dK be the

boundary of K and K = KVJdK. Let the nonconstant real function

h(u, v) be continuous in K and harmonic in K. A point (u0, v0)EK

is called a critical point (of the function h(u, v)) of order >m, if at

(u0, flo) all the partial derivatives with respect to u and v vanish up

to and including a certain order m2i 1. Let h\ dK be the restriction of

the function h(u, v) to dK. We want to show that h\ dK has at least

1+ E*=i m* different relative maxima on dK, if there are k different

critical points («,-, vi)EK, l<i<k, of orders ^w„ respectively.

Lemma 1. If (ua, va)EK is a critical point of order ^ma, then there

are (closed) Jordan arcs Ja», Ja\, • • • . -7<«2r-i with r^l+ma con-

tained in K with the properties:

(a) JaiCMaj= \(ua, va)} for i9*j\ (ua, va) is an endpoint of /„,-,

0^«£2r-l;

(b) Jair\dK= {(uai, vai)}, 0^i^2r — l; the points (uao, vaa), (uai,

f«i), • • • , (ua,2r-i, va,2T-i) are endpoints of the corresponding arcs; they

follow each other in this order if dK is run through in positive sense;

(c) for (u, v)EJai~ {(ua, va)} inequality ( — l)l[h(u, v)—h(ua, va)]

>0 holds, 0^i^2r-l.

The proof may easily be seen from an argument of Rado [4, p. 793].

Lemma 2. If the different points (ui, Vi)EK, l^i^k, are critical

points of orders ^ w;, respectively, then there are w ^ 1 + E?= 1 m% mu-

tually disjoint, simply connected open domains Gi, ■ ■ ■ , Gm contained

in K with the properties:



1256 ROLF SCHNEIDER [December

(a) For (u, v)EK — U™=1 Gjand (u, v)t£(u{, »,•), 1 f^i^k, the inequal-

ity h(u, v) < maxi£iik[h(ui, Vi)} holds;

(b) dKC\PGj contains in its (nonempty) relative interior (with respect

to dK) a point where h\dK has a relative maximum, 1 ̂ j^m.

Proof. We proceed by induction. First let k — 1. Let Jio, • • • ,

ii,2r-i, with r^l+mi, he the Jordan arcs belonging to the critical

point («i, vi) according to Lemma 1, and let (w10, »io), • • • , («i,jr_i,

»i,2r-i) be the corresponding endpoints on dK. Because of properties

(b) and (c) in Lemma 1, the continuous function h\dK must have a

relative maximum between (uu, Vu) and (ui,i+2, Vi,i+2) for odd i,

lgi5S2r —1 (where (wi,2r+i, Vi,2r+i): = (uu, Vn)). Therefore the con-

nected components G\, ■ ■ ■ , Gr of K — U2u Ju have the properties

demanded in Lemma 2, which hence is true for k = l.

Suppose now the statement of Lemma 2 is proved for a k ^ 1. Let K

contain, then, the k + 1 critical points (uit vt), ltkitkk + 1, of orders

^TW;, respectively. After appropriate renumbering, if necessary, we

may assume h(uk+i, vk+i) 7^maxiiiik{h(ui, Vi)}. By the inductional

hypothesis, to the k points («,-, vt), l^i^k, there belong 5 domains

Gi, • • ■ , Gs, where s^l+ 22i-i nti, with the properties of Lemma 2.

Because of property (a), the point (uk+i, vk+i) is contained in one of

these domains, (uk+i, vk+i)EGi, say. Let Jk+i,o, ■ ■ ■ , /i+i,2l—1, where

r^l+mk+i, be the Jordan arcs belonging to (uk+i, vk+i) according to

Lemma 1. Since for j even, (u, v)EJh+ij~ {(uk+i, vk+i)} implies the

inequality h(u, v)>h(uk+i, vk+i)^maxiiisk{h(ui, v{)}, the arc Jk+i,j

with 2 \j must be contained (one endpoint excluded) in Gi. The com-

ponents, containing the point (uk+i, vk+i), of the pointsets Jk+ujC^Gi,

with 2\j, 1 £j^2r — 1, separate the domain Gi into r simply connected

domains G[ , ■ ■ ■ , G'r , each containing (except for its endpoints) one

arc Jk+ij with j even. Each endpoint different from (uk+i, vk+i) of such

an arc is contained in a subarc of dK each of whose endpoints either

is an endpoint of an arc Jk+i,j, with 2\j, or a point of d(dKC\dGi).

Since h(u, v) <h(uk+i, vk+i) for (u, v)Ed(dKC^dGi) it is clear that the

function h\ dK must have a relative maximum in the relative interior

(with respect to dK) of dKC\dGi, l^i^r. Hence the domains

Gi , ■ • • , Gr , G2, ■ ■ ■ , Gs, the total number of which is r + (s—l)

Sil+Wfc+i-f- 225=1 mi> have the properties demanded in Lemma 2.

Thus we have proved Lemma 2 and hence the fact that h\ dK must

have at least 1+ 22rt=i mi different relative maxima on dK, if K con-

tains k different critical points (ut, vt) of orders ^w,-, respectively.

Now let r be a Jordan curve in En, and let 5 be a generalized

minimal surface of the type of the disc (in the representation given
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initially), bounded by Y. Let the different points (ut, Vi), w?+i^<l,

l^i^k, be branch points of 5 of orders wt, respectively. Let Y be a

unit vector. The point (m,-, vt) EK is a critical point of order ^ w,- of

the function A(m, z>) = Y■ X(u, v), which is continuous in K and har-

monic in K. Hence, for the number ^(r, Y) (which may be «)

of relative maxima of the function Y-X\dK we have ju(r, Y)

^l+E*-i mi- Since Y was arbitrary, the crookedness p(Y)

= min{^(r, Y)} (where Y ranges over all unit vectors) of Y satisfies

the inequality p(Y) 2:1+ E?=i mi- But according to Milnor [l,

p. 253], the inequality K(T)^2irp(Y) holds; hence our theorem is

proved.
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