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1. Let S be a set consisting of K elements, and call any subset of 5

containing precisely m elements an m-set [2]. We wish to study

incidence matrices obtained in the following manner: Let K^m^n

3:0, we label the rows of the matrix by all the w-sets of 5 and the

columns by all the w-sets of 5; take the (i, j) element as 1 if the m-set

corresponding to the ith row contains the w-set corresponding to the

jth column, and zero otherwise.

This note studies the question of which collections of w-sets give

rise to a linearly dependent set of row vectors, and likewise what com-

binations of w-sets give rise to a linearly dependent set of column

vectors. To do this, we characterize the row null spaces and the

column null spaces of the above matrices in an inductive manner.

Then using this characterization, we prove that the above matrices

must have maximal rank. A corollary then gives a necessary condi-

tion for the existence of a tactical configuration [l].

2. Now for anv K^m^n^O, we shall define a canonical matrix

AK

We first define a lexicographical ordering of the w-sets of

{1, • • • , K}, the set of integers from one to K, in the following way.

Represent any w-set as (ai, • • • , am) where ai<ai+i for i = 1, ■ • ■ , m.

Then we say that (a\, • • • , am) <(bi, ■ ■ ■ , bm) if and only if ai<bt

for the smallest value of i for which ai9*bi. We shall call this ordering

the canonical ordering of the w-sets of {1, • • • , K}.

We now define ^4^n to be the incidence matrix whose rows cor-

respond to the w-sets of {1, • • • , K} in their canonical order, and

whose columns correspond to the «-sets in their canonical order. For

example, the first row of A„„ corresponds to (1, 2, • • • , w) and the

first column to (1, 2, • ■ • , n).

3. We gather some simple facts about A„n here. Ca,t, will represent

the usual binomial coefficient.

Lemma 1. A*in has

(a) Ck ,m = K !/w! (K — m)! rows,

(b) Ciz.n columns,

(c) Cm,» ones in each row,

(d) CK-n,m-n ones in each column.

Received by the editors April 15, 1966.

1233



1234 D. H. GOTTLIEB [December

Lemma 2.

(a) ^4i,i =Aiy0 = A0,0 — A0i(1 = 1,

(b) A*m = I*, the Cit.mXCKm identity matrix.

In order to simplify the hypothesis for the following recurrence

formula, we shall extend the definition of A^n for all integers

K, m, n.

Conventions.

(a) Let 0 stand for the empty matrix and let 0^„ stand for the

CK.mXCK.n matrix of all zeros. Sometimes 0mn may be abbreviated

by 0.
(h) An,n = 0 if K<m or n; or if K, m or n is less than zero.

(c) Ain = 0%,„ if m<n.

It is now easy to see that the following formula is true.

Lemma 3.
K-l K-l

K /^4m-l,n-l        Am-1,„ \
Am'n = VTyM Ji^i     ) '

\Om,n-i Amtn    /

The Am<n matrices satisfy a multiplication formula which[gives a

simple proof of our main result.

Lemma 4. Let K^m^p^n^O. Then

AK   AK   =C AK

Proof. For K = 0 or K = l (see Lemma (2a)) the lemma is true.

Xow the proof proceeds easily by induction. We multiply A^iP by

Ap ,„ using the partition formula of Lemma 3. The resulting matrix is

partitioned into four parts. Three parts clearly agree with the stated

formula. For the upper right hand submatrix we have

K-l K-l K-l K-l K-l K-l

A-m—l.p—lAjt—i.n  -\-   Am^ilPJiPl7l Cm— 1—n,p— 1—n-^-m— l,n    I    ^m—l—n.p—n-^wt— l,n

- C AK~\

which is the desired submatrix.

4. Before we state our theorems, it is convenient to establish some

notation. From now on, K^m^n^O. By RN*„, we denote the row

null space of Amn. Similarly, CN^„ denotes the column null space of

A„iU. If Mm and Nn are two vector spaces whose vectors are regarded

as tuples of numbers, then Mm @Nn denotes the m+n dimensional

vector space given by those (w + w)-tuples of numbers such that the

first m positions form a vector of Mm and the last n positions form a

vector of N".
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We define the following CK,mXCK,n matrix.

Im-l 0   '

T=        -1      ,K-1
■^1 m ,m— 1       * m

,m — n

where Im-i and Im are the Cs:_i,m_i and Ck_i,m dimensional identity

matrices respectively. T is a nonsingular matrix. In fact

Im-i 0 '

m — n

Theorem 1. The nonsingular matrix T, operating on the right, in-

duces a linear isomorphism from RN^lJ,, ©RN^L! to RNf"1.

Proof.

K

I -Am.n

■Am— i,n—1 ^-m—\,n

1 .K-l X-l 1 ,K-1       ,X-1 K-l
^m.m— 1-^in-l.n— 1 -^m.m—1-^m—l,n  ~T~   ^m,n

[      m — n m — n

Since      Al^_iAlzln-i = (m-n + l)AKm:n\i      and      AKm^_iAlz{n =
(m — n)AKn,n (see Lemma 4) we have

■^ wi— 1 ,n—1 -^ m—1 ,n

TA*,n = (m-n+1)      K-i
-^m,n-l 0

m — n

Since T is nonsingular, right multiplication by T carries the row

null space of TAm,n isomorphically to RN^n, the row null space of

Am,n- Thus all we need do is study the row null space of TA%_n.

Consider the row vector v = (x, y) where x and y are vectors of

appropriate length such that

„k (     k-i (m-n+1)       k-i i-i\
vTAm,n = n:i»-i,»-i-yAm,n_i, xAm-i,n )•

\ m — n )

Then vTA^n = 0 if and only if

n^ a*-1 (m-n+1)       K-i
(1) xAm-l,n-l-yAm,n-i = 0

m — n
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and

(2) xAm-i.n = 0.

The first equation is equivalent to

yAm,„_i = 0

since equation (2) and Lemma 4 imply that

K-l 1 K-l K-l
S-"-4m_iin_i — (XAm—i.n)Ant„—i —  0.

m — n

Thus the row null space of TA%„ is identical with RN*li,B © RN^,1.;.

This proves the theorem.

Similarly, if we define

/-i 0

L=     --^—AK-\l
m — n

we get

Theorem 2. L, operating on the left, induces a linear isomorphism

from CN*"1., eCNjl!,, to CN*,.

5.  In developing the consequences of the above theorems it is

helpful to keep the following in mind.

Remark. Suppose K^m^n^O, then CK,m~^CK,n if and only if

either m=n or m + n^.K.

Corollary 1.

dim (RN*,,) =0 ifm + n^K,
(a)

= CK.m — CR,n ifm + n^ K.

IT

dim (CNm,„) = CK.n — CK.m       if m + n ^ K,
(b)

= 0 ifm + n^K.

Proof. The theorem is true for A^ = l (see Lemma 2). Assume the

theorem is true for K—l. From the above theorems we see that

(1) dim (RN^n) = dim (RN„_~i,„) + dim (RNf"1.,)

(2) dim (CN*n) = dim (CN^-O + dim (CN^L).

Suppose m + n^K. Then (m— l)+n^K — 1 and m + (n — 1) S:K — 1.

So    by    induction    dim   (RN^lJ.J = dim   (RN^IJ = 0.    Hence
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dim (RN^„)=0. Hence the rank of the matrix must be the number

of rows of Amn, which is CK.m (see Lemma 1). This implies that

dim (CN^„) =number of columns of /l„iB_number of rows = Cx,n

— CK.m- For the other case, when m+n^K, use equation (2) and the

same argument as above.

Corollary 2. Am,„ has maximal rank.

6. A tactical configuration C[k, I, X, v], [l], is defined as follows.

Given a set E of v elements, and given positive integers k, I (l^k^v),

a tactical configuration is a system of &-sets of E such that each /-set

is contained in exactly X &-sets of the system.

Corollary 3. // C[k, I, X, v] does not contain every k-set of E, then

k+Kv.

Proof. A tactical configuration C[k, I, X, v] corresponds to a set of

rows, S, of Al,t. Let r, be a row vector. Then

(1) D r, = (X, X, ■ ■ ■ , X) = X(l, • ■ - , 1).

On the other hand, letting Z, = Cp_;,s_j,

(2) Z ^ = L(l, ■■-,!).
• 11 r;

Hence we obtain

£ Ln - 22 x'< = 0
T,eS all r,

or

22 (L~ X)r, + 22 ~ *rt = 0-
r^eS r,«S

Since 5 does not include all the rows of Alj, we see that the row

vectors form a linearly dependent set. Hence, since A't,i has maximal

rank, there are more rows than columns. That is, CK.m>CK.n, hence

m+n<K.
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