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1. Introduction. The purpose of this paper is to obtain sufficient

conditions for the boundedness of solutions of equations of the form

(1.1) x" + B(l)x' + 4 (/)**-> = 0,

where x is a column w-vector,

X  —   \Xi,  X<i) , Xm)j

24-1       ik-1 24-1
x2*-1 = (xi    , x2    , ■ ■ ■ , xm    ), for k a positive integer.

A(t), B(t) are continuous m by m matrices with elements which are

continuous real-valued functions of t for t on /: a ^t < + °o. Since m

can be replaced by 2m there is no loss of generality in assuming that

the wz2-elements of A(t), B(t) are real valued. Thus the components

of the vectors on which A(t), B(i) operate will be confined to the real

field.
For a fixed t on /: a^t< + °o let 2H{t) be the sum and 2K{t) the

difference of A(i) and its transposed matrix AT(t), that is, A(t)

= H(t)+K{t), where H(t) is symmetric and K{t) is skew-symmetric.

If A(x, y) is the bilinear form belonging to the matrix A(t) the form

K(x, x) vanishes identically. Let o denote scalar multiplication of

vectors, then

f(t) | x |2 ^ x o Ax = A(x, x) = H(x, x) + K(x, x)

' ' A        ^       /A   I |o
= x o A x ^ g(t) | x | -

where g(/) is the greatest eigenvalue of H(t),f(t) is the smallest eigen-

value of H(t), and | x\2 is the square of the length of x. If t varies over

/, then H(t), f(t), g(t) are continuous functions of t since A(t) is a

continuous function of t. xoy= 2™ i xiVu for x = (xi, x2, ■ ■ ■ , xm),

y = (yu 3/2, • ■ • , ym)- Only nonidentically zero solutions of (1.1) will

be considered. Also the notation (x o x) = \x\2 for the square of the

length of a vector will be used.

For the case k = l, P. Hartman [2] considered the question of the

existence of large or small solutions of equations of the type (1.1) and

A. Wintner [6] established a comparison theorem for Sturmian

oscillation  numbers of solutions of equations of  the  type   (1.1).
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J. Jones [3] obtained a sufficient condition for nonoscillatory solu-

tions of (1.1) for the case of B(t) =0, and k = l. Equations of the type

(1.1) arise in the investigation of the natural frequencies, rates of

decay and modes of free vibrations of damped systems. For a recent

treatment for the case of constant matrices for k = 1 see P. Lan-

caster  [4].

2. Results. We have the following results concerning the bounded-

ness of solutions x(t) of (1.1) on the interval I = a^t< + 00.

Theorem 1. Let the following conditions hold:

(i) B(t) is a continuous mby m matrix with real-valued elements on I,

(ii) A(t) is continuously differentiable, symmetric, positive definite

and nondecreasing on I,

(iii) A'(t)+Bit)A(t)+A (t)B(t)T^0on I, where T denotes the trans-

posed matrix, and prime ' denotes differentiation with respect to t.

Then E[x(t)] = (xk o xk)+k(y o y) is nonincreasing on I.

A(t) is nondecreasing on I if t^s, and A(t)—A(s) is nonnegative.

Let A ll2{t) be the unique symmetric positive definite square root of

A(t), and A-1'*(t) = (A1i*(t))-1. Now Mi) differentiate and A(t)>0

on / imply that All2(t) is also differentiable on /.

Equation (1.1) may be written as a system of first order differential

equations for a (2m)-vector (x, y) where

(2.1) y = A-^(t)x'.

An equivalent system to (1.1) is the following

x' = A^\t)y,y' = - yt1'^)*2^1 - A-^\t)(A^Ht))'y

(2.2)
V - A-v\i)B(f)A"Ki)y.

A solution vector x = x(t) of (1.1) determines a solution vector (x, y)

= (x(t), y{i)) of (2.2) and conversely. For any solution (x, y) of

(2.2), let

E{t) = E[x(t)] = (xk o x*) + k(y o y)
(2 3)
K = (** o xk) + k(A~l(t)x' o x')

be an amplitude functional. Making use of (1.1), (2.3) and the

identity

.4-1'2(/)[/l1/20M1/2(0],-4-1/2(/) = A-W(t)A'(t)A-u\t),

we have
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dE
-= -2k[A1ii(t)(A1'2(t)Y + A-wiQBQAWitflyoy
dt

(2.4) = - *[il-1/*(0(il1/,(0)' + (^1/2(/))'^-1/20)

+ 2A-xi\t)B(t)Alii(t)]yoy

= - kA-li\t)[A'(t) + B{t)A(l) + A(t)B(t)T]A-li\t)yoy.

Now by (iii), (1.1), (2.4) we see that E{t) is nonincreasing on /.

Theorem 2. Let conditions (i), (ii) of Theorem 1 hold along with the

following conditions

(iv) [/(/)] dt< + <*>, [f(t)]   =-,   \f(t)\  =-
J a L L

for /£/ where fit) is the smallest eigenvalue of the symmetric component

of

(2.5) A-n*it)[A'it) + B(t)A(t) + A{t)BT(t)]A-W(t),

then all solutions xit) of (1.1) remain bounded as t—> + co.

Now

0 ^ (si* ox*) + kiyoy) = E[x(t)] = E[x(a)]
(2.6)

- k f   U-1'2(r)[.4'(r) + Bir)Air) + A<j)B*{TJ\A-"*(j)\y oydr.
"a

Using (1.2), (2.6) we have

(2.7) 0 S k | y ]2 g E[x(a)] + k f   [/(r)]"- | y \Ht,

where/(/) is the smallest eigenvalue of the symmetric component of

(2.5), and \y\2 is the square of the length of the vector y. Using an

inequality given in R. Bellman [l, p. 35, (2.7)] we have

0 g k | y |2 £ E[x(a)] exp ( J    [ftffdr)

(2.8)

£E[x(a)]ap(f ]f(t)]~dt\

Thus \y\ is bounded as /—>+ °°- Then from (2.6) we have
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0 g (xk o xk) g (xk o xk) + k(y o y) == £[*(<)]

^ £[*(a)] + £ f   [«t)]"- I y \*dr - £ f   [/(r)]+- | y\Hr,
(2.9) •/o "^ o

* f°\f(r)]+- \y\2dr g £[*(«)] + £ f  [/(Of- | y\Ht,

and

£[*(/)] ^ £[*(«)] + * J   [/(t)]~ • | y\Hr
(2.10) , '

-*     [/«] -|y|«r,
■'o

hence .E [*(/)] remains bounded as <—++ °° and thus all solutions

remain bounded as £—►+ ».

Theorem 3. Z.e£ A, B be m by m constant matrices having real ele-

ments, A positive definite and symmetric, and C any m by m positive

definite matrix having real elements, such that the following pairs of 2m

by 2m matrices are not similar, namely,

(2.11) (B       C),    (B      °)

then E[x(t)] = (xk oxk)+k(y o y) is nondecreasing on I for x(t) a

solution of (I A).

W. E. Roth [5] has shown that the similarity of the pair of matrices

of (2.11) is a necessary and sufficient condition that the matrix equa-

tion

(2.12) BX + XBT = C

have a solution X. Thus no solution X of (2.12) exists for any posi-

tive definite matrix C and (2.3), (2.4) imply that E(t) is a nonnega-

tive nondecreasing function of t for /£/.
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ORDER ISOMORPHISMS OF CONES

O. S. ROTHAUS

Let C be a closed convex cone of vertex 0 in a real normed vector

space L. We suppose C does not contain an entire straight line, and

let • 2: • be the order induced on L by C. Let S be some subset of L.

A map <p: S—>S is said to be order preserving on 5 if x^y implies

<p(x) ̂ (p(y). We say a bijection <p: S<->5 is regular on 5 if both <p and

(p^1 are order preserving on 5. (We are not assuming <p continuous.)

Zeeman has shown [2] that if C is a right circular cone in Ri, the

only regular maps of R* are affine, with linear part a Lorentz trans-

formation. In this paper we show that similar conclusions can be

drawn under more general circumstances.

Before proceeding, we would like to record the benefit of several

useful conversations with M. Koecher. We also note that, at the sug-

gestion of the referee, we have modified our Proposition 1 to include

the infinite dimensional case.

As part of the setting for the sequel, we shall insist that C have a

compact base. This means there is a continuous linear functional h on

L such that h(x)>0 for xGC-<j>, and the set P = h~l(l)OC, called a

base of the cone, is compact. Each ray in C intersects P exactly once,

and as is customary, we call a ray passing through an extreme (re-

spectively exposed) point of P an extreme (respectively exposed)

ray of C.
Since P is the closure of the convex hull of its extreme points, C is

the closure of the convex hull of its extreme rays. Furthermore, let p

be an exposed point of P. There is, by definition, a continuous linear

functional 5 on L and a real number a such that s(x) +a^0 for x£P,
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