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1. Introduction and summary. It is well known that the integral

fV~a%f(x)dx, a>0, of a nonnegative function f(x) on the real line,

which is unimodal, i.e., f(kx) Si/(x), OiSfc^l, and symmetrical about

the origin, is a monotonically decreasing function of |0|. An im-

mediate probabilistic consequence of this is the fact that, if a random

variable X has a unimodal probability density function symmetric

about the origin, and Y is any independently distributed random vari-

able, then Prj|Z| Sia} ^Pr{|X+F| Sia} for any real a. T. W.

Anderson [l] has extended the aforementioned monotonicity property

to integrals of functions on a Euclidean w-space £„ by replacing the

symmetric interval of the real line by a convex set of <£„ symmetric

about the origin, and formulating the following definition of uni-

modality of functions on £n.

Definition 1. A function f(x) on £„ is said to be unimodal if the

set Ku = {x |/(x) Si u} is convex for each u Si 0.

More specifically, he has proved the following:

Theorem 1. Let E be a convex set in £,., symmetric about the origin.

Letf(x)>0 be a function such that (i) /(x)=/(—x), (ii) {x|/(x)>w}

= i£u is convex for every u, (0<w< <»), and (iii) JEf(x)dx< <x> (in the

Lebesque sense). Then

(1) f f(x+ky)dx^   f f(x + y)dx

for O^jfe^l.

Anderson has also discussed some analogues of the probability

inequality mentioned above and many other probabilistic and statis-

tical applications.

In §2 we have obtained a generalization of the Theorem 1 by re-

laxing the condition of symmetry about the origin, on the function

/ and the set E, to a restriction of invariance with respect to finite

groups of linear transformations of £„, and we have indicated the

analogues of some of the probability inequalities in [l].
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In §3 we have discussed some particular cases by considering in-

variance with respect to the group of reflections in the origin, the

permutation group, and the cyclic permutation group in w-space. It

has been shown that the integral of a symmetric unimodal function

over a symmetric convex region, is an 5-concave (in Ostrowski's

sense) function of the translation parameter.

In the final §4, we have stated and have outlined a somewhat differ-

ent proof of a slightly different version of the inequality without as-

suming the group of transformations to be finite.

2. The inequality with invariance w.r.t. a finite group G. Let G= [git

i — 1, 2, ■ ■ ■ , N} be a finite group of Lebesgue measure-preserving

linear transformations of <£„ onto £„. Let £ be a convex set of re-

space, invariant under G, or G-invariant, i.e. x££ implies giXEE,

* = 1, 2, • • • , TV. Let fix) =^0 be a function on ra-space satisfying

(i) the unimodality condition: {x|/(x) ^w} =KU is convex for

every u, 0<w< »,

(2) (ii)  G-invariance condition:/(g,x) =f(x),    * = 1, 2, • ■ ■ , A7, for

each x in £„, and

(iii) fEfix)dx < oo in the Lebesgue sense.

For a set a= {«i, a2, • • • , a^}, a<^0, * = 1, 2, • • • , TV, 23;=i a« = L
and a vector y of w-space let us define

n

(3) a(y) = 23 ongiy.
i=i

Then we have, as a generalization of the Theorem 1, the following:

Theorem 2. For each set a= {<xx, ■ ■ • , om\, a,-S^0, 23a»=L and

vector y of £nwe have

(4) I   /(* + a(y)) dx *z   f f(x + y)dx,
J E " B

where /^0 and E are G-invariant, f is unimodal, E is convex and a(y)

is defined by (3), provided fEfix)dx< oo.

Proof. We have to show, equivalently, that

(5) I /(*) dx ̂    f     /(x) </*,

where £+y is the set £ translated by the vector y. Now it is easy to

verify that, because of the convexity of £ and Ku
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N

(6) {E + a(y)} H Ku D S <*i[{E + giy\ C\ Ku],

where the summation symbol £ on the right hand side of the inclu-

sion relation corresponds to the sum, called the Minkowski sum [4],

defined by

(7) A +B = {a + b\ a£ A, b E B]

for any two sets A, B of £„, and where multiple cA of a set A of £n

by a real c is defined by cA = {ca\aEA}. Let p(-) be the Lebesgue

measure of sets in £„. Then we have by the Brunn-Minkowski theo-

rem [2], [3], [4],

(N \ N

£ <*i[{E + g>y} C\ Ku] ) Si £ ^'"({fi + g.y} H 7f„).

But because of the invariance of / and E and linearity and measure

preserving properties of the transformations g,-, i = 1, 2, • • • , N, we

have

(9) M({7f + g,y} HZ.) = M({£ + y} H #„).

Combining (6), (8) and (9) we get

(10) H(u) = n({E + a(y)}n Ku) Si a({E + y\ n Ku) = 77*(«).

Because of the definition of Lebesgue-Stieltjes integrals we can write

(11) | f(x)dx-   \      f{x)dx=   I    ud[B*(u) - H(u)].
J E+a(y) J E+y ^ 0

The right hand side of (11) is nonnegative, which may be verified

by using integration by parts as in the proof of the Theorem 1 of [l].

This completes the proof of the Theorem 2.

As in [l], it may be noted that we obtain strict inequality in (4) if,

and only if, for at least one u, H(u) >H*(u), since 77(m) is continuous

on the left. For 77(m) =H*(u) we need equality in (8), which is a con-

sequence of the Briinn-Minkowski theorem. The condition for equal-

ity may, therefore, be stated as:

Corollary 1. In the Theorem 2, the equality in (4) holds if, and

only if, (E+giy)(~\Ku are similarly oriented for each u.

Corollary 2. If the probability density function f(x) of a random

n-vector X satisfies the conditions (2) and E is a convex set of n-space

invariant under G, then for any n-vector y and set a, Pr{X+a(y)£E}
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^Pr{X+y££}. Furthermore, if fe(x) is a G-invariant function such

that  \x\h(x)t%\v}  is convex, then Pr{/t(A+«(y)) ^v] ^Pr{ kiX+y)

The proof of the following corollary is analogous to the proof of the

Theorem 2 of [l].

Corollary 3. Let the probability density function fix) of a random

n-vector X satisfy the conditions (2) and let Y be any independently

distributed random n-vector. Then for any set a= {a\, ■ • ■ , aw\,

«i = 0, 23ai = L and any convex G-invariant set E of n-space

(12) Pr{X + a(F) £ E] ^ Prf X + F£ £}.

Furthermore, if hix) is a G-invariant function such that \x\ hix) ^v]

is convex, then

(13) Pr{/z(X + aiY)) ^ v] ^ Pr{/z(X + Y) ^ v\.

3. Some particular cases, (i) If the group G in §2 is the group of

reflections in the origin the Theorem 2 reduces to the above stated

Theorem 1 of Anderson [l].

(ii) An important particular case of the Theorem 2 is obtained if

the group G is the permutation group in £,.

Definition 2 (Ostrowski [6]). A function G(y) on £n is said to be

S-concave if, for each doubly stochastic matrix S, of order n, and each y

in £„

(14) GiSy) ^ Giy).

Now Birkhoff's theorem [5] states that the set of doubly sto-

chastic matrices of order ra is a convex polyhedron with N = n\ per-

mutation matrices Pi, i — l, 2, ■ ■ ■ , N, as the vertices. Thus every

doubly stochastic matrix 5= 23^=i a'£'f°r some seta = {ai, • • -,a.y},

«; = 0, 23*= i «i = l. Hence we have the following Theorem 3 as a par-

ticular case of the Theorem 2.

Theorem 3. Let a function /(x)^0 on £n be symmetric (w.r.t.

permutations) and satisfy the conditions (i) and (iii) of (2). Let E be

a convex, symmetric iw.r.t. permutations) set of <£„. Then fefix-\-y)dx

is an S-concave function of y, i.e.,

(15) f fix + Sy) dx ̂   f fix + y) dx,
J E " E

for any doubly stochastic matrix S.
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It is also well known [6] that, given two w-vectors y and z, there

exists a doubly stochastic matrix S, such that z = Sy if, and only if,

„,. z(i) + ■ • • + z(k) ^ yw + • • • + y(k), k = 1, 2, • • • , n - 1,
(16)

Z(D + • • • + Z(») = yti) + ■ • • + y(n),

where y^ and Z(j), *=1, 2, • • ■ , n are the coordinates of y and z,

ordered in nonincreasing order of magnitude. The conclusion (15) of

the Theorem 3 may thus be expressed as: For any two vectors y and

z of w-space, satisfying (16) we have

(17) f /(* + z) dx Si   |   f(x + y) dx.
" E " E

Corollary 4. If the probability density function f(x) of a random

n-vector X is unimodal and symmetric w.r.t. permutations of the co-

ordinates of x, and Y is an independently distributed random vector

then for any convex symmetric set E of £n, and any doubly-stochastic

matrix S, we have

(18) Pr{Z-r-5F££} Si Pr{Z+ F££}.

Furthermore, if h is a symmetric function such that {x\h(x)^v\ is

convex then

(19) ¥r{h(X+ SY) ^v] ^Pr{h(X+ Y) ^v}.

(iii) Now let the transformation group of §2 be the group of the

cyclic permutations of n coordinates. One has the matrix representa-

tion for this group as gi = p*~1, i = l, 2, ■ ■ ■ , n, where P is a permuta-

tion matrix given by

"0   0 •• • 0    r

1    0 • •• 0    0

P =    0    1 • • • 0    0   .

.0   0 • ■ ■ 1    0_

Thus for any vector y of £„ and a set a= [ai, a2, • • • ,«„}, ajSiO,

i = l, 2, ■ ■ ■ , n, £aj = l we have

n n

a(y) = £ <*igiy = 21 onPi+1y = C(a)y,

where C(a) is the doubly stochastic circulant matrix given by C(a)

= (cn), Cij=ai, k = k(i, j)=i+j— 1 mod (n) or more explicitly,
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ai        a2 ■ • • a„_i    an

ct2       a3 • • • a„        ai

C(a) =    «3        a4 ■ • • ai        c*2

,a„    ai • • • a„_2    an-i .

Also, it is easy to verify that the set of all doubly stochastic circulant

matrices form a convex polyhedron with the permutation matrices

pi_l, *=1, 2, •••,», as the vertices. We have, therefore, the follow-

ing Theorem 4 as another particular case of the Theorem 2.

Theorem 4. Lei a function fix) H] 0 on n-space by unimodal and in-

variant under cyclic permutations. Let E be a convex set of n-space

symmetric with respect to cyclic permutations. Let fsfix)dx < <x>. Then

for any doubly stochastic circulant matrix C and any vector y of n-space

we have

(18) f /(* + Cy) dxi:  f fix + y) dx.
J E J E

It is easy to write down analogues of the Corollary 4 for this case.

One may similarly write down, with ease, the particular case of the

Theorem 2 when the function fix) and the set £ are invariant under

the group of 2" reflections in the coordinate planes.

4. The inequality. We shall now outline a somewhat different proof

of a somewhat different and generalized version of the inequality of

§2 without the finiteness condition on the group G.

Theorem 5. Let G= {g} be a group of linear Lebesgue measure-

preserving transformations of £n onto £„. Let E be a convex, G-invariant

region of £„. Let f be a nonnegative real-valued, G-invariant and uni-

modal function on <£„. Then for arbitrary y in £n we have

(19) f fix + z)dx^  f fix + y)dx,
J E " E

where z is any point in the convex-hull of the G-orbit of y.

Proof. The theorem can be proved along the lines of the proof of

the Theorem 2, by using the generalized version of the Briinn-

Minkowski theorem due to Dinghas [2], [3], [4]. However, the argu-

ment may be simplified as follows, by using a twist suggested by
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Kemperman in a personal communication.

The crucial step in the proof of the Theorem 2 is the statement (10),

which holds without requiring G to be finite. To see this let us fix y

and write,

(20) Z= {«!*(*) ^4>iy)},

where

(21) c4(s) = MI/n((£ + 3) H Ku).

Then by the Briinn-Minkowski theorem it follows that,

(22) c6(Xzi + (1 - X) z2) ^ Ac4(zi) + (1 - X)0(z2),    for 0 ^ Xx g 1.

Hence for any y in £„ the set Z of (20) is convex. Furthermore as in

the proof of the Theorem 2 it can be verified that gy(EZ for each

g£G. Therefore, for any point z in the convex-hull of {gy|g£G| we

have

(23) m((£ + z) r\ ku) ^ M((£ + y) n Ku),

which is analogous to the statement (10). The proof from here on is

the same as the proof of the Theorem 2.

The analogue of the Corollary 2 for the Theorem 5 is easy to formu-

late. A group G of special interest in probability and statistics is the

group of orthogonal transformations. The G-orbit of any y for this

group is the sphere 23"= 1 #?= IIy\\2 in £«• This special case may be

studied as in §3 without any difficulty.
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