
A NOTE ON IC-p GROUPS

I. M. ISAACS

In [l], Bauman defines an IC group as a finite group in which

every intersection of two subgroups neither of which contains the

other has every Sylow subgroup cyclic. His Theorem 1 shows that an

IC group has a normal 2-complement unless an .S2 is abelian or

quaternion. Using some of his methods we prove a more general

result.

Definition. A finite group G is an IC-p group if whenever H,

PCG, H%K, KQH and HCAK is a /'-group, then PfPiP is cyclic.
Our main result is

Theorem. Let G be an IC-p group which is not a p-group. Then an

Sp of G is either

(i) cyclic,

(ii) of period p and order ^p3 or

(iii) quaternion.

We begin by observing that if G is an IC-p group then so is every

subgroup and if PAG is a p-group then G/P is an IC-p group. Unlike

the situation with IC groups, it is false that all quotients of IC-p

groups also have the property. An example is the direct product of

the quaternion group with an elementary abelian group of order p2

for any odd prime p. This is an IC-p group but its quotient by the

subgroup of order 2 is not.

Lemma 1. Let G be a p-group which is an IC-p group and let PAG

be a noncyclic subgroup. Then G/P is cyclic.

Proof. If G/P has more than one maximal subgroup then each

corresponds to a maximal subgroup of G and the intersection of two

of these subgroups is cyclic and contains P. This cannot happen and

thus G/P has a unique maximal subgroup and hence is cyclic.

Lemma 2. An IC-p group is p-normal.

Proof. This is essentially Lemma 2 of Bauman's paper and his

proof works here.

Lemma 3. ylw IC-p group of period p has order ^p3.
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Proof. The group in question, P, is a £-group and if its order were

~^p3 it would have a normal subgroup A of order p2. Since A is not

cyclic, P/^4 is cyclic and has period and hence order p by Lemma 1.

Therefore |P| =p\

Lemma 4. // P is a 2-group and Z=SiP) then P/Z is not the quater-

nion group. If P/Z is abelian and P is generalized quaternion, then P

is quaternion.

Proof. If P/Z is quaternion there are distinct A, B^Z of index 2

in P with A/Z and B/Z cyclic. Thus A and B are abelian and AC\B

QSi(A, B))=SiP)=Z. Therefore [P:Z]=4 contradicting P/Z

quaternion. The second statement follows from an examination of

the generalized quaternion groups.

Lemma 5. Let G have a cyclic normal p-subgroup P. If u is any ele-

ment of G of order prime to p which centralizes some element of P

then u centralizes all of P.

Proof. Let P = (x) and suppose u~lxu=x\ u~1xru = xT where

r<pk=\P\. Since xr = u~1xru=xri, we have pk\iri — r) and since

pk>r, p\ ii— 1) and i= 1 mod p. If the order of m is 5 then x = u~'xu*

= x'8 and pk\ii'-l). Since l+i+i2+ ■ ■ ■ +i'~1 = l + l+ • • ■ +1

= 5^0 mod p, we have^l (» — 1) and xi = x. Therefore u centralizes P.

Proof of the Theorem. If HQG is not a £-group and p\ [G:H],

let Po be an Sp of H and let P^P0 be one of G. Then P0 = PC\H and

P%H and H%P and thus P0 is cyclic. In particular, if any P0<P

is normalized by a p' element u of G, then by letting H= (Po, u) we

see that Po is cyclic. Similarly, if Af is a normal p' subgroup of G

and Pn<P is arbitrary, then letting H = P0N we conclude that P0

is cyclic. In this situation let xG,3(P) have order p. liyEP has order

p then letting P0 = (x, y) we have either P0 = P and |P| <p2 or P0

is cyclic. Therefore if |P| >p2, (x) contains all elements of order p

and P is either cyclic or generalized quaternion. Since a generalized

quaternion group contains the noncyclic quaternion group, the inclu-

sion cannot be proper. We have therefore proved the theorem in the

case where there is some normal p' subgroup.

Suppose that in the general case the theorem is false. Let G be a

counterexample of minimal order with Sp P. Since the IC-p property

is inherited by subgroups, P is maximal in G. If Z = £iP) then

PC9I(Z) and either ZAG or W.iZ)=P. We may apply Grun's

Theorem by Lemma 2 and thus in the latter case G has a normal

^-complement. Since G can have no normal p' subgroup G must be a

p-group which we are assuming is not the case. Therefore ZAG and
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hence PCg(Z)AG. If P is not normal in G then S(Z)=G and

ZQ3(G).
Continuing with the assumption that P is not normal, suppose

P~2Z0~2Z, ZoAG and P/Z0 is abelian. Since P/Z0 is its own nor-

malizer in G/Z0 we may apply Burnside's Theorem to conclude that

G/Zo has a normal p-complement. In particular, if P/Z is abelian,

G/Z has a normal p-complement which has the central SP Z and thus

G has a normal ^-complement which is a contradiction.

By the theorem applied to G/Z and by Lemma 4 we may conclude

that p is odd and P/Z is the nonabelian group of period p and order

p3. We let Zi be the inverse image of the center of P/Z. We may

conclude as before from Grun's Theorem that either ZiAG or else

G/Z has a normal ^-complement which we know is impossible since

ZQg>(G). Since P/Zi is abelian, we may let Z0 — Zi and conclude

that G/Zi has a normal ^-complement Af. Since Zi<P it is cyclic

and since every p' element of Af centralizes ZCZi, by Lemma 5 it also

centralizes Zi which therefore is a central Sp oi Af. Hence Af has a

normal ^-complement and this yields a contradiction. We therefore

must have PAG.

Suppose now that P/Z is abelian. If p = 2 then by Lemma 4 P is

not generalized quaternion and thus has more than one involution.

If P is not abelian then Z <P is cyclic and P has a noncentral involu-

tion x. Since we are assuming P is not abelian, P/Z is not cyclic and

thus by the theorem applied to G/Z it is elementary abelian and

{Z, x)AP. Since (Z, x) is not cyclic, by Lemma 1 its quotient in P

is cyclic and thus of order 2 and [P' Z] =4. Let Z0 be of index 2 in

Z. If Z0> 1 then by induction, since ZoAG, either P/Z0 is elementary

abelian or quaternion. Since Z/Zo does not contain the image of x,

P/Zo has more than one involution and thus P/Z0 is elementary

abelian and the quotient P/(Z0, x) is not cyclic. This contradiction

shows that Z0 = l and thus |p| =8 and therefore P is dihedral and

has exactly two elementary abelian maximal subgroups. Each is

therefore normalized by any element of G of odd order and thus by

our earlier remarks must be cyclic. This contradiction shows that if

P/Z is abelian, either p is odd or P is abelian and since the class of

P is ^2 it is a regular p-group in either case. Therefore the subgroup

Pi generated by the elements of order p has period p. Pu*P by

Lemma 3 and thus Pt, being normal in G, is cyclic and there is a

unique subgroup of order p. Therefore P is cyclic and we have a con-

tradiction.

Since P/Z is not abelian we may conclude as before by applying

the theorem to G/Z that p is odd and P/Z is the nonabelian group of
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period p and order p3. Let ZiAG be the inverse image in P of £iP/Z).

Now Zi is cyclic but no maximal subgroup of P is cyclic for this would

correspond to an element of order p2 in P/Z. Therefore no maximal

subgroup of P is normalized by any p' element of G.

Now let yEG have prime order q¥"p. Since y permutes the p + l

maximal subgroups of P containing Zi and fixes none of them,

q\p + l. Since SP(Zi) <P and is normal in G it must equal Zi. There-

fore Sg(Zi) has the central Sp Zi and thus has a normal p-complement

which as we have seen must be trivial. Hence y does not centralize

Zi and thus by Lemma 5 y acts without nontrivial fixed points on Zi

and q\p — l. Thus q = 2 and y is an involution. Now y fixes no

xEP — Zi or else it normalizes (Z\, x). Therefore y is an involution

acting without nontrivial fixed points on P which must therefore be

abelian. This contradiction proves the theorem.

As an application of the theorem we prove the following.

Corollary. If G is a p-solvable IC-p group, then the p-length of

G is I.

Proof. We must show that DP'PP>iG) =G. Assume to the contrary

that 0P'Pp>iG) does not contain an Sp P of G. By Lemma 1.2.3 of

[2], Dn'„(G)/Op'(G) contains its own centralizer in G/Cy(G). There-

fore £Vj,(G)/Dp<(G) is not central in PDP'(G)/0P'iG) and in particu-

lar P is not abelian and since a normal subgroup of order p in a

p-group is always central, p2\ [Op<,,(G):£V(G)]. By the theorem we

may conclude that P either has period p or is quaternion. Since cer-

tainly 0P'PP'iG)^P we know that Pf^\£)P'PP'iG) is cyclic and thus

&p'P(G)/Op> (G) is cyclic. Since its order is ^p2 it cannot have period

p and thus p = 2 and P is quaternion. Therefore £VP(G)/DP<(G) is a

cyclic normal subgroup of order 4 of G/Op'(G) which is thus cen-

tralized by every element of odd order in G/DP'(G). We conclude

that G/£)P'iG) is a 2-group and this contradiction completes the proof.
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