QUASI-ORDERINGS AND TOPOLOGIES ON FINITE SETS

HENRY SHARP, JR.

1. Throughout this paper S is the finite set $\{s_1, s_2, \dots, s_n\}$, and if 3 is a topology on S then A^- denotes the 3-closure of the subset A of S. It is our purpose to investigate topologies on S and to answer a few combinatorial questions related to these topologies. The connection between T_0 -topologies and partial orderings on finite sets (Theorem 7) already appears in several standard references [1, p. 28] and [2, p. 14]. That there is a one-to-one correspondence between the topologies on S and the quasi-orderings on S follows from the next paragraph.

For each set $A \subseteq S$, $A^- = \bigcup \{s_i\}^-$ over all $s_i \in A$, hence to identify a topology on S it suffices to display the closures of all singletons. For this purpose we choose the relation matrix

$$t_{ij} = 1$$
, if $s_i \in \{s_i\}^-$,
= 0, otherwise.

The Kuratowski closure axioms [3, p. 43] imply that $[t_{ij}]$ is reflexive $(A \subset A^-)$ and transitive $(A^{--} = A^-)$.

Let $T = [t_{ij}]$ be the matrix corresponding to a topology 5 and let F_i and B_j be the subsets of S having characteristic functions $\{(s_1, t_{i1}), (s_2, t_{i2}), \dots, (s_n, t_{in})\}$ and $\{(s_1, t_{1j}), (s_2, t_{2j}), \dots, (s_n, t_{nj})\}$. Note that $s_j \in F_i$ iff $s_i \in B_j$. For each $i, F_i = \{s_i\}^-$ is the minimal closed set containing s_i .

THEOREM 1. For each j, B_j is the minimal open set in 5 containing s_j .

PROOF. We show first that $S-B_j$ is closed. If $s_i \in S-B_j$ and if $s_k \in F_i$, then $t_{ij} = 0$ and $t_{ik} = 1$. Transitivity forbids $t_{kj} = 1$, hence $F_i \subset S-B_j$. To show that B_j is minimal, let U be any open set containing s_j . If $s_k \in S-U$ then $F_k \subset S-U$ and $s_j \notin F_k$. Hence $s_k \notin B_j$ and $S-U \subset S-B_j$.

COROLLARY. The weight [1, p. 7] of any topology on S does not exceed n+1.

Adjoining \emptyset to the family of distinct minimal open sets B_i produces a basis for the topology which we call the *minimal basis*.

THEOREM 2. If
$$i \neq j$$
, $t_{ij} = 1$ iff $B_i \subset B_j$.

Received by the editors July 29, 1964.

PROOF. If $B_i \subset B_j$ then $s_i \in B_j$ and $t_{ij} = 1$. On the other hand suppose $t_{ij} = 1$. For each k if $t_{ki} = 1$ then $t_{kj} = 1$ and $B_i \subset B_j$.

COROLLARY. If $i \neq j$, $t_{ij} = t_{ji} = 1$ iff $B_i = B_j$.

THEOREM 3. If $i \neq j$, $t_{ij} = 1$ iff $F_i \subset F_i$.

The proof is like that of Theorem 2.

COROLLARY. If $i \neq j$, $t_{ij} = t_{ji} = 1$ iff $F_j = F_i$.

THEOREM 4. A reflexive, $n \times n$, zero-one matrix T corresponds to a topology on S iff $T^2 = T$.

PROOF. Matrix multiplication here involves Boolean arithmetic. The theorem follows from the fact that a reflexive relation ρ is transitive iff $\rho \rho = \rho$ [2, p. 209].

2. Let 3 and 3* be topologies on S with corresponding matrices $T = [t_{ij}]$ and $T^* = [t_{ij}^*]$. Then $3 = 3^*$ iff $t_{ij} = t_{ij}^*$ for each i and j. On the other hand 3 and 5^* are topologically equivalent iff there exists a permutation $\pi(S) = S$ under which the minimal bases of 3 and 5^* correspond. The matrices T and T^* are called isomorphic (nonisomorphic) if 3 and 5^* are equivalent (nonequivalent) [5]. It follows that T and T^* are isomorphic iff there exists an $n \times n$ permutation matrix P such that $T^* = P'TP$, where P' is the transpose of P.

If \mathfrak{I} is a topology on S then the family \mathfrak{I}' of complements of members of \mathfrak{I} also is a topology on S. We shall call \mathfrak{I}' the *transpose* (or the *dual*) topology with respect to \mathfrak{I} .

Theorem 5. If T is the matrix corresponding to the topology 3 then T' (the transpose of T) is the matrix corresponding to the topology T'.

PROOF. We show first that $(T')^2 = T'$. Let $T = [t_{ij}]$ and $T' = [t_{ji}]$. Then $(T')^2 = [v_{ij}]$ where

$$v_{ij} = \sum_{k=1}^{n} t_{jk} t_{ki}.$$

But $T^2 = T$, therefore $v_{ij} = t_{ji}$ and $(T')^2 = T'$. By Theorem 4, T' corresponds to a topology on S, and the nonempty members of its minimal basis are the 3-closures F_i . Hence the topology consists of the family of all unions $\bigcup F_i$; that is, of all 3-closed sets.

THEOREM 6. The topology 3 is not connected iff for some k, 0 < k < n, both T and T' contain the same $k \times (n-k)$ zero submatrix.

PROOF. A topology 3 is not connected iff there exists a nonempty proper subset A of S such that $A \in 3$ and $A \in 3$. This means that

 $A = \bigcup B_i = \bigcup F_i$ over all i such that $s_i \in A$. But the complement, S - A, has the same property. Let k be the cardinal of A and the theorem follows.

In finite topological spaces the separation properties characterizing T_{0^-} , T_{1^-} , T_{2^-} , etc., spaces are of limited help in the study of topological structure. The only interesting partition of topologies in this hierarchy occurs at the T_0 level. The theorem stated next formalizes the relation mentioned at the beginning of the paper.

THEOREM 7. The topology 3 on S is T_0 iff its matrix T is anti-symmetric (that is, T defines a partial ordering on S).

COROLLARY. The weight of a topology 3 on S is n+1 iff 3 is T_0 .

In general, the topologies 3 and 3' are neither equal nor equivalent. In the event, however, that 3'=3 the matrix T is symmetric and we call its corresponding topology symmetric. The symmetric topologies correspond to the equivalence relations on S. Theorems 6 and 7 imply that 3' is T_0 or connected iff 3 is.

In the matrix T corresponding to the topology 3, let $C(\mathfrak{F}) = (c_1, c_2, \dots, c_n)$ be the column sum vector and let $R(\mathfrak{I}) = (r_1, r_2, \dots, r_n)$ be the row sum vector [4, p. 61]. The class of vectors each of which is some permutation of the coordinates of C (or of R) is a topological invariant. Also, the sum, τ , of the entries in T is a topological invariant. These, unfortunately, are not topological characters; for the two matrices below describe nonequivalent topologies.

Γ1	0	0	0	0	0٦	۲1	0	0	0	0	0	
0	1	0	0	0	0	0	1	0	0	0	0	
0	1	1	0	0	0	1	0	1	0	0	0	
1	0	0	1	0	0	0	1	0	1	0	0	•
1	0	0	0	1	0	1	0	0	0	1	0	
L ₁	1	1	0	0	1_	L ₁	1	1	0	0	1_	

In each matrix C = (4, 3, 2, 1, 1, 1) and R = (1, 1, 2, 2, 2, 4). We shall call the matrix $T = [t_{ij}]$ triangular if $t_{ij} = 0$ for all i < j.

Theorem 8. The matrix T corresponding to a topology 3 is isomorphic to a triangular matrix iff 3 is T_0 .

PROOF. If T is isomorphic to a triangular matrix then $t_{ij} \cdot t_{ji} = 0$ for all $i \neq j$. Now assume that 3 is T_0 . There exists a permutation matrix P such that $T^* = P'TP$ has a monotone (nonincreasing) column sum vector. If T^* is not triangular, then for some $i < j t_{ij}^* = 1$. By Theorem 2

 $B_i^* \subset B_j^*$, and by the Corollary to Theorem 7 $B_i^* \neq B_j^*$, hence $c_i < c_j$ which is a contradiction.

THEOREM 9. Let 3 be a topology on S. There exists a topology 5^* equivalent to 3 such that $C(5^*)$ and $R(5^*)$ each are monotone (non-increasing) iff 5 is symmetric.

PROOF. Sufficiency is evident since $c_i = r_i$. If 3 is not symmetric then for some $i \neq j$ $t_{ij} = 1$ while $t_{ji} = 0$. By Theorems 2 and 3 $c_i \leq c_j$ and $r_i \geq r_j$, but since $t_{ji} = 0$ strict inequality holds in each case.

THEOREM 10. Among the symmetric topologies only the discrete is T_0 and only the indiscrete is connected.

PROOF. If $t_{ij} = t_{ji} = 1$ and if 3 is T_0 then by Theorem 7 i = j. To prove the latter statement, we may assume by Theorem 9 that the column sum and row sum vectors are monotone. The least coordinate in the column sum vector is c_n , and we assume that $c_n = k < n$. If $t_{in} = 1$ then $B_i = B_n$ and T contains k identical columns each with n - k zero entries. By Theorem 6 T is not connected.

The following corollary refers to different, although possibly homeomorphic, topologies.

COROLLARY. If n>1 then the number of different T_0 topologies is odd, the number of different connected topologies is odd, and the number of connected T_0 topologies is even [6].

3. If n is 3 the *trivial* topologies (discrete and indiscrete) correspond, respectively, to the matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

It is evident that the extreme values of τ , in general, are n and n^2 ; but it is not the case that all intermediate values are possible.

THEOREM 11. If 3 is nontrivial then $n < \tau \le n^2 - n + 1$.

PROOF. Only the right-hand part of the inequality is in question. Suppose for some $i \neq j$ $t_{ij} = 0$. Then for each k such that $k \neq i$ and $k \neq j$ either $t_{ik} = 0$ or $t_{kj} = 0$.

A little more than 10 years ago R. L. Davis published a formula (among others) for the number of nonisomorphic reflexive relations on S [5]. The author is not aware of a formula enumerating the subfamily of transitive relations. Such a formula, in addition to being of value in logic and combinatorics, would answer the question: how many nonequivalent topologies are there on a finite set?

For small n the preceding theory can be used to good advantage in the enumeration problem. Though the method lacks subtlety, it is not impossibly tedious for $n \le 5$, even without the assistance of a digital computer. In Table 1, "t" denotes the number of nonequivalent topologies on S, "tc" denotes the number that are connected, "to" denotes the number that are both connected and T_0 , and "ts" denotes the number that are symmetric. Figure 1 displays matrices corresponding to all nonequivalent topologies for n=3 and n=4.

TABLE 1

				TABLE 1				
n		t	tc		to	tco		ts
2		3	2		2	1		2
3		9	6		5	3		3
4	ļ	33	21		16	10		5
5	1	39	94		63	44		7
				Figure :	I			
100	100	100	110	100	100	100	110	111
010	110	110	110	010	110	111	110	111
001	001	101	001	111	111	111	111	11:
1000	100	00	1000	1000	1100	100	0	1100
0100	110	00	1100	0100	1100	010	0	1100
0010	001	.0	1010	1110	0010	101	0	0010
0001	000)1	0001	0001	0001	010	1	0011
1000	100	00	1000	1000	1100	100	0	1100
1100	010	00	1100	0100	1100	111		1100
1110	111	.0	1010	0010	0011	111		1110
0001	100)1	1001	1111	0011	000	1	0001
1000	100	00	1000	1000	1000	100	0	1000
0100	110	00	1100	1100	1100	010		1110
1110	111	0	0010	1010	1110	111		1110
1101	100)1	1111	1111	1101	111	1	1001
1100	111	10	1000	1100	1000	100	0	1000
1100	111	10	1100	1100	0100	111		1100
0010	111	10	1110	1110	1111	111		1111
1111	000)1	1111	1101	1111	111	1	1111
	110	00	1100	1000	1110	111	1	
	110	00	1100	1111	1110	111		
	11	10	1111	1111	1110	111		
	11:	11	1111	1111	1111	111	1	

REFERENCES

- 1. P. S. Aleksandrov, Combinatorial topology, Vol. 1, Graylock, Rochester, N. Y., 1956.
- 2. Garrett Birkhoff, *Lattice theory* (rev. ed.), Amer. Math. Soc. Colloq. Publ. Vol. 25, Amer. Math. Soc., Providence, R. I., 1948.
 - 3. John L. Kelley, General topology, Van Nostrand, New York, 1955.
- 4. Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. XIV, Math. Assoc. Amer., 1963.
- 5. Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486.
 - 6. R. A. Rankin, Problem No. 5137, Amer. Math. Monthly 70 (1963), 898.

EMORY UNIVERSITY