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1. Throughout this paper S is the finite set {si, s2, • • • , sn}t and

if 3 is a topology on S then A" denotes the 3-closure of the subset A

of S. It is our purpose to investigate topologies on S and to answer

a few combinatorial questions related to these topologies. The con-

nection between 7Ytopologies and partial orderings on finite sets

(Theorem 7) already appears in several standard references [l, p. 28]

and [2, p. 14]. That there is a one-to-one correspondence between

the topologies on S and the quasi-orderings on S follows from the

next paragraph.

For each set AQS, A~ = \J{si}~ over all SiEA, hence to identify

a topology on S it suffices to display the closures of all singletons.

For this purpose we choose the relation matrix

tij =1,        if Sj E {si}~,

= 0,        otherwise.

The Kuratowski closure axioms [3, p. 43] imply that [tn] is reflexive

(AQA~) and transitive (A——A-).
Let T= [tij] be the matrix corresponding to a topology 3 and let

Fi and P, be the subsets of S having characteristic functions

{(si, tn), (s2, tn), ■ ■ ■ , (sn, tin)} and {(su h,), (s2, h,), ■ ■ • , (sn, tni)}.

Note that 5y£Pj iff Si£Pj. For each i, /*"<= {st}~ is the minimal closed

set containing Sj.

Theorem 1. For each j, Bj is the minimal open set in 3 containing Sj.

Proof. We show first that S — Bj is closed. If SiES — Bj and if

SkEFi, then i^ = 0 and tik = l. Transitivity forbids fcy = l, hence

FiES — Bj. To show that P, is minimal, let U be any open set con-

taining Sj. If SkES— U then FkES— U and SjEPk- Hence skEBj and

S-UES-Bj.

Corollary. The weight [l, p. 7] of any topology on S does not ex-

ceed n+l.

Adjoining 0 to the family of distinct minimal open sets Bj pro-

duces a basis for the topology which we call the minimal basis.

Theorem 2. If i^j, Uj = l iff BiEBj.
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Proof. If £,££, then $*££,• and fy = l. On the other hand sup-

pose tij—1. For each k if hi=l then fc, = l and £,£73,-.

Corollary. If i^j, *,-,• = <y,- = l iff Bi = Bj.

Theorem 3. If i^j, 2,-, = l i/f FjC.Fi.

The proof is like that of Theorem 2.

Corollary. If i^j, <</=<,•,= 1 i^ £, = £..

Theorem 4. ^4 reflexive, nXn, zero-one matrix T corresponds to a

topology on S iff T2 = T.

Proof. Matrix multiplication here involves Boolean arithmetic.

The theorem follows from the fact that a reflexive relation p is transi-

tive iff pp=p [2, p. 209].

2. Let 3 and 3* be topologies on 5 with corresponding matrices

T= [tn] and T* = [t%\. Then 3 = 3* iff tij = t% for each i and j. On the

other hand 3 and 3* are topologically equivalent iff there exists a

permutation 7r(5) =S under which the minimal bases of 3 and 3* cor-

respond. The matrices £and T* are called isomorphic inonisomorphic)

if 3 and 3* are equivalent (nonequivalent) [5]. It follows that T and

T* are. isomorphic iff there exists an nXn permutation matrix £ such

that T*=P'TP, where £' is the transpose of P.

If 3 is a topology on 5 then the family 3' of complements of mem-

bers of 3 also is a topology on 5. We shall call 3' the transpose (or the

dual) topology with respect to 3.

Theorem 5. If T is the matrix corresponding to the topology 3 then

T' ithe transpose of T) is the matrix corresponding to the topology 3'.

Proof. We show first that (£')2=£- Let T= [j,7] and T'= [<,<].

Then (£)2= [»»/] where
n

1'ij  =   Z-i tjkhi-
/fc-1

But Ti=T, therefore »« = <;< and iT'Y = T'. By Theorem 4, V cor-

responds to a topology on S, and the nonempty members of its

minimal basis are the 3-closures £. Hence the topology consists of

the family of all unions U£; that is, of all 3-closed sets.

Theorem 6. The topology 3 is not connected iff for some k, 0<k<n,

both T and V contain the same kXin — k) zero submatrix.

Proof. A topology 3 is not connected iff there exists a nonempty

proper subset A of 5 such that ,4 £3 and A £3'. This means that
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A =\JBi = \JFi over all i such that SiEA. But the complement, S — A,

has the same property. Let k be the cardinal of A and the theorem

follows.

In finite topological spaces the separation properties characterizing

Po-, Pi-i T2-, etc., spaces are of limited help in the study of topological

structure. The only interesting partition of topologies in this hier-

archy occurs at the P0 level. The theorem stated next formalizes the

relation mentioned at the beginning of the paper.

Theorem 7. The topology 3 on S is P0 iff its matrix T is anti-sym-

metric (that is, T defines a partial ordering on S).

Corollary. The weight of a topology 3 on S is n + l iff 3 is T0.

In general, the topologies 3 and 3' are neither equal nor equivalent.

In the event, however, that 3' = 3 the matrix T is symmetric and we

call its corresponding topology symmetric. The symmetric topologies

correspond to the equivalence relations on 5. Theorems 6 and 7

imply that 3' is P0 or connected iff 3 is.

In the matrix T corresponding to the topology 3, let C(J)

= (ci, C2, ■ ■ ■ , cn) be the column sum vector and let P(3)=(ri, r2,

• • • , f„) be the row sum vector [4, p. 61]. The class of vectors each

of which is some permutation of the coordinates of C (or of R) is a

topological invariant. Also, the sum, r, of the entries in T is a topologi-

cal invariant. These, unfortunately, are not topological characters;

for the two matrices below describe nonequivalent topologies.

"i   0   0   0  0  on      ri   0   0   0  0  o-

010000     010000

011000     101000

100100        010100'

100010 100010

.1    1    1   0   0   lj       Li    1    1   0   0   1.

In each matrix C=(4, 3, 2, 1, 1, 1) and P = (l, 1, 2, 2, 2, 4).
We shall call the matrix T— [t(j] triangular if 2,3 = 0 for all i<j.

Theorem 8. The matrix T corresponding to a topology 3 is isomorphic

to a triangular matrix iff 3 is TQ.

Proof. If T is isomorphic to a triangular matrix then J,y •<,•,= 0 for

all i T^j. Now assume that 3 is Po. There exists a permutation matrix

P such that T*=P'TP has a monotone (nonincreasing) column sum

vector. If T* is not triangular, then for some i<jt% = l. By Theorem 2
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B*C.B*, and by the Corollary to Theorem 7 B*9^B*, hence Ci<c,

which is a contradiction.

Theorem 9. Let 3 be a topology on S. There exists a topology 3*

equivalent to 3 such that C(3*) and £(3*) each are monotone inon-

increasing) iff 3 is symmetric.

Proof. Sufficiency is evident since d = ri. If 3 is not symmetric

then for some i^j <i, = l while <y, = 0. By Theorems 2 and 3 c.^Cy

and ri^rj, but since tji = 0 strict inequality holds in each case.

Theorem 10. Among the symmetric topologies only the discrete is T0

and only the indiscrete is connected.

Proof. If i,y = fy, = l and if 3 is £0 then by Theorem 7 i=j. To

prove the latter statement, we may assume by Theorem 9 that the

column sum and row sum vectors are monotone. The least coordinate

in the column sum vector is c„, and we assume that cn = k<n. If

tin = 1 then Bi = Bn and £ contains k identical columns each with n — k

zero entries. By Theorem 6 £ is not connected.

The following corollary refers to different, although possibly

homeomorphic, topologies.

Corollary. If n>l then the number of different £0 topologies is

odd, the number of different connected topologies is odd, and the number

of connected TB topologies is even [6].

3. If n is 3 the trivial topologies (discrete and indiscrete) corre-

spond, respectively, to the matrices

"i  o  on ri   i   r

0    10 and 111-

.0    0    lj Ll    1    1.

It is evident that the extreme values of r, in general, are n and ra2;

but it is not the case that all intermediate values are possible.

Theorem 11. If 3 is nontrivial then n<r^n2 — n + l.

Proof. Only the right-hand part of the inequality is in question.

Suppose for some i^j £,y = 0. Then for each k such that kj^i and k^j

either tik = 0 or tkj = 0.

A little more than 10 years ago R. L. Davis published a formula

(among others) for the number of nonisomorphic reflexive relations

on 5 [5]. The author is not aware of a formula enumerating the sub-

family of transitive relations. Such a formula, in addition to being

of value in logic and combinatorics, would answer the question: how

many nonequivalent topologies are there on a finite set?
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For small n the preceding theory can be used to good advantage in

the enumeration problem. Though the method lacks subtlety, it is

not impossibly tedious for w^5, even without the assistance of a

digital computer. In Table 1, "t" denotes the number of nonequiva-

lent topologies on 5, "tc" denotes the number that are connected, "to"

denotes the number that are P0, "tco" denotes the number that are

both connected and Po, and "ts" denotes the number that are sym-

metric. Figure 1 displays matrices corresponding to all nonequivalent

topologies for w = 3 and w=4.

Table 1

n t tc to tco ts

2 3        2        2        12
3 9        6        5        3        3

4 33       21       16       10        5
5 139       94       63       44        7

Figure 1

100 100 100 110 100 100 100 110 111
010 110 110 110 010 110 111 110 111

001   001    101   001    111    111    111    111    111

1000 1000 1000 1000 1100 1000 1100
0100 1100 1100 0100 1100 0100 1100
0010 0010 1010 1110 0010 1010 0010

0001 0001 0001 0001 0001 0101 0011

1000 1000 1000 1000 1100 1000 1100
1100 0100 1100 0100 1100 1110 1100
1110 1110 1010 0010 0011 1110 1110

0001 1001 1001 1111 0011 0001 0001

1000 1000 1000 1000 1000 1000 1000
0100 1100 1100 1100 1100 0100 1110
1110    1110    0010    1010    1110    1110    1110
noi        iooi        mi        mi        noi        nn        1001

1100 1110 1000 1100 1000 1000 1000
1100    1110    1100    1100    0100    1110    1100
ooio mo mo nio mi ino nn
nn        oooi        nn        noi        nn        nn        nn

noo noo iooo mo nn
noo noo nn mo nn
mo nn nn mo nn
nn nn nn nn nn



i966] quasi-orderings and topologies on finite sets 1349

References

1. P. S. Aleksandrov, Combinatorial topology, Vol. 1, Graylock, Rochester, N. Y.,

1956.
2. Garrett Birkhoff, Lattice theory (rev. ed.), Amer. Math. Soc. Colloq. Publ.

Vol. 25, Amer. Math. Soc, Providence, R. I., 1948.

3. John L. Kelley, General topology, Van Nostrand, New York, 1955.

4. Herbert John  Ryser,  Combinatorial mathematics, The Carus  Mathematical

Monographs, No. XIV, Math. Assoc. Amer., 1963.

5. Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math.

Soc. 4 (1953), 486.
6. R. A. Rankin, Problem No. 5137, Amer. Math. Monthly 70 (1963), 898.

Emory University


