
A NOTE ON COMPOUND SIMPLE GAMES

T. PARTHASARATHY

1. Introduction. A game is called simple if every coalition of play-

ers either wins or loses. Given any two simple games (players are as-

sumed to be distinct in the two games) we define the product as one

in which every winning coalition must include winning contingents

from both the components. A typical example of a product game is

any organization in which some member has veto power. L. S.

Shapley has obtained the following theorem on product solutions [l].

Theorem 1. For i = 1, 2, let { Yiia) | 0 ^a ^ 1} be a monotonic family

of solutions of r(£„ Wt) except that Fj(l) need not be externally stable,

and let X;(a) =APi — donij Yiia). Then

X =     U    Ai(a) X A2(l - a)

is a solution ofT(P, W)=T(PU lFi)®r(£2, W2).

In this connection L. S. Shapley has raised the following questions:

(1) Can the requirement of full monotonicity be relaxed outside a

neighbourhood of a, = l for the validity of Theorem 1?

(2) If the answer to (1) is "Yes," then does there exist a solution to

product simple games which need not have the property of full

monotonicity?

In §3, we give an affirmative answer to the first question, while in

the last section, we present an example of a product solution which is

not fully monotonic in the sense of Shapley.

The author is greatly indebted to Dr. L. S. Shapley for several

highly helpful comments. Thanks are also due to the referee and to

Mr. A. R. Padmanabhan for some useful suggestions and criticism.

2. Definitions and notations.

Simple games. We shall denote a simple game by the symbol T(£, W)

where £ is a finite set (players) and W is a collection of subsets of P

(the winning coalitions). We demand that ££IF and empty set not

an element of W. Let T(£i, Wi) and r(£2, W2) be two simple games

with Pi(~\P2 = 0 and let P = Pi\JP2. Then the product r(£i, Wx)

cg>r(£2, W2) (for simplicity we will write P\®P2) is defined as the

game r(P, W) where W consists of all SQP such that SHPiG^

and Sr\P2EW2.
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Imputations. Let Ap denote the simplex of real nonnegative vectors

x, such that £x» = 1. These vectors are traditionally called "imputa-

tions" where P is the set of players in a simple game. Let us write

x(S) for £ies Xi. Let Rsx be the restriction of x to 5 thus:

Rsx = Xi        if i £ S,

= 0 if i £ 5.

The barycentric projection of x on As is given by

1
Bsx = -Rsx.

x(S)

This is well defined provided x(S) >0. Let Pi and P2 be fixed disjoint

sets. LetP = PAJP2and

Api = {x| x£ ^4p and x(P,) = 1}.

If A and F are subsets of APl and ^4p2 respectively, we define an

operation X« by (OSail)

AX Y = {z | z = ax + (1 — a)y for some x £ X, y £ F}.
a

We recall that a solution of the game T(P, W) is a set A of imputa-

tions such that X = AP — dom A where dom X denotes the set of all

yEAP such that for some x£A, the set [i\ Xi>y{] is an element of W.

The notation donu and dom2 will be used for domination w.r. to

special classes W\, Wi.

Definition. A parametrized family of sets of imputations

[F(a):0 Sail]

will be called semimonotonic if for every a, B, x such that 0^a^(3^1

and x £ Y(B), there exists y £ Y(a) such that

ay i 8.x.

Definition. A semimonotonic family { Y(a)} is called fully mono-

tonic if for every a, 8, y such that O^a^jSil and yEY(a), there

exists x £ Y(B) such that

ay % Bx.

We will now generalize the concept of full monotonicity.

Definition. A semimonotonic family Y(a) is called d-monotonic

(Ogagl) if for every a, B, y such that d^a^B^l and yEY(ct),

there exists x£ Y(B) such that ay^Bx.

Remark. Any d-monotonic family is necessarily cVmonotonic if
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3. On two theorems of Shapley. Shapley has proved Theorem 1

and the following theorem in [l].

Theorem 2. Let {X,(a)} be semimonotonic families of solutions of

T(Pi, Wi). Then

X =     U     Xi(a) X X,(a)

is a solution of Pi<8>P2.

The purpose of this section is to prove a theorem which includes

both of these theorems.

Let Yi(a)Q:Api for t = l, 2. Further suppose the families to be

semimonotonic. Let Xi(a) =Api—domi Yi(a). For every SjEWi

consider the following sets

Ai(Sy) = {a | 1 > a > 0,    there exists xx £ Yi(a)

and y\ £ Ai(l) — Fi(l) such that ax\ > y± on Sj].

Now choose one a, from each Ai(S3) which is not empty. Let a0

= minaJ; we fix these a/s and it is clear that a0>0. We wish to

remark that there is certain amount of arbitrariness in choosing

a/s. Now we shall prove the following simple but useful lemma.

Lemma 3. If Yi(a) is a0-monotonic then there exist vectors ZjE Fi(l)

for those j for which Ai(5,-) 7^0 and a di with 0<di^a0 such that

Zj Si di on Sj.

Further if we take any a£Ai(S,-), aSidi.

Proof. Since a,-£Ai(5,-) there exists Xj£Fi(a,) such that ayx,->0

on Sj. Since cto^a,- and the family is oro-monotonic there exists Zj

£ Fi(l) such that

Zj Si ajXj.

Let ej denote the least component among the Sj components of Xj.

Define di = min afij. Then we have

Zj = di on Sj.

Also it is trivial to check that 0<diia:o. Hence the first part of the

proof of the lemma is complete. We shall now prove that any a£Ai(5j)

will satisfy the inequality a Si 6V

Take any a£Ai(S,). This means there exists an xi£Fi(a) and

yi£Ai(l)— Fi(l) such that axi>yi on Sj. We claim that at least

one of the 5, components of yi must be greater than or equal to 6\;
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otherwise z;>yi on S, and therefore yi£domi z,Cdomi Fi(l) which

contradicts the assumption thatyi£Ai(l) =APl — domi Fi(l). There-

fore we have a > yiiS,) ^ di. Hence the proof of the lemma is com-

plete.

Similarly we can get hold of a d2 by constructing A2(S/) for 5/ £ W%.

If all the AiiSj) and A2(5/) are empty we define do to be any positive

number in the interval (0, l]—in fact we can takedo=l. If AiiSi)9£0

for some j and A2(5/)^0 for some j we define do = min[di, d2]. If

AiiSj) 9^0 for some j and A2(5/) =0 for all j, we define do = di and

in the other case we take da — d2. In all these cases we see that da>0.

Now we are in a position to state and prove our

Theorem 4. Let Fi(a) and Y2ia) be a semimonotonic family of solu-

tions to r(£i, IFi) and r(P2, W2) respectively except that Fi(l) and

F2(l) need not be externally stable. Further suppose the family to be 50-

monotonic. Then

X =     U     Xifjot) X A2(l - a)

is a solution of Pi®P2, where X2ia) =APi — dom* F,(a).

Remark. Since { Yiia)} is semimonotonic it follows that F,(l) is

internally stable. If F,(l) for i — l, 2, is also externally stable, that is,

if F,(l) is a solution then it is not hard to check that Ai(Sy) and

A2(5/) are all empty and we can take d0 = 1. In other words Theorem

2 is included in our theorem. It is not hard to check that A-sets are

empty if Yiia) are fully monotonic and hence Theorem 1 is also in-

cluded in our theorem. We will show by giving an example that

Theorem 4 is actually a generalization of Theorems 1 and 2.

Proof of Theorem 4. Our proof follows along the same line as

the one given for Theorem 2. Note that Xtia) = Yiia) for all a except

o-l.
External stability. Take any y£^4p and define /3, = y(£j) and let yt

be the barycentric projection of y on APi.

Case 1. 0<jSi<l.

Case la. yi£Xi(p\), y2£A2(/32), then y =ftyi+fty2£Z.

Case lb. yi£Xi(|3i), y2£A"2(|32), this means there exists xt£ Fi(/3i),

x2£ F2(32) such that yj£dom,- x< for * = 1, 2.

Then the imputation defined by

X = /?!«! + /32x2

which is in X, clearly dominates y or y£dom X.

Case lc. y1£X1031),y2$A2(/32).

Find x2£F2(j82)  such that y2£dom2x2. Let x2>y2 on 52'£TF2.
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Choose e>0 so that /32x2 — /32y2>e on Si. Using the semimonotonic

property of Yi(a) find x2 £F2(/32 — e) such that /32x2 — (ft — e)x2 is

nonnegative. This vector must be |e in all components, since no

component of a nonnegative vector can exceed the sum of all com-

ponents. If follows that we have

(02 — e)xi > fay2 on Si.

Let Mi be any interior point of Apv Then the imputation x defined by

x = jSiyi + eui + (82 — e)xi

dominates y on Pi*<JSi. If x£A then y£dom X and we are through.

Suppose x£A. Then the barycentric projection of x on Apv namely

181 e
x0 =-yi -\-«i

ft + e /9i + e

must not be an element of Xi(Bi+e) = Yi(Bi+e). Hence we can find

xi£Fi(/3i+e) such that x0£domiXi. Then it is clear that the im-

putation z defined by

z = (/3i + e)xi + (82 - e)xi

dominates y. Since z£A it follows y£dom X.

Case Id. yiEXi(Bx), y2£X2032) (like case lc).

Case 2. p\ = 0.
Case 2a. y2£A2(l), then y£A.

Case 2b. y2£A2(l). This means y2£dom2 F2(l) and hence argu-

ment of case lc can be repeated with the understanding that /3iyi = 0.

Case 3. Bx=l (like case 2). This completes the proof of the external

stability of X.
Internal stability of X. Suppose there exists x, y£A such that x>y

on SEW. Let Si = Sr\Pu 52 = 5HP2; x=axi+(l-a)x2 and y=Byi

+ (1-B)y2. Since x>y on 5iU52 = 5, it follows that 0<a<l.

Case la. l>/3Sia. Since a>0, 8 is also strictly positive. Also

axi>j8yi on 5i. Since Fi(a) is semimonotonic, there exists x{ £ Fi(a)

such that Byi^axi. Hence, axi>axi on Si or Xi>Xi on Si contra-

dicting the internal stability of Fi(a).

Case lb. aSi^>0. This means 1>1— |8Si I—a. Since aj^l this case

is similar to the previous case except that we have to utilize the semi-

monotonic property of Yi(a).

Case 2a. pi = l that is axi>y = yi on Si. If yi£ Fx(l) then using the

semimonotonic property of Fi(a) we will arrive at a contradiction. If

yi£Xi(l)— Fi(l) then a£Ai(Si) and hence by Lemma 3, aSidiSido.

Since Fi(a) is 60-monotonic one can find yi £ Fi(l) such that y[ Siaxi
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>yi. This implies yi£domi Fx(l) or yi£Ai(l) which contradicts our

assumption regarding y\.

Case 2b. 0 = 0 or 1 — 0 = 1 and the argument can be carried over as

in the case 2a.

Hence the proof of our theorem is complete.

4. An example of a solution of product simple games. The following

example shows that solutions to product simple games can be found

that satisfy the conditions of Theorem 4 but not that of Theorems 1

or 2. In other words every solution that satisfies the conditions of

Theorem 4 need not have the property of full monotonicity.

Example. The four person game J is defined by

r(1234, {124,134, 234, 1234})

where members in the curly brackets denote the winning coalitions

of the game J.

I = Mz® Bt.

M% denotes the 3-person simple majority game and Bt the 1-person

pure bargaining game. Define, for 0=a^3/4

X^a) =     U     F(0)
ogpsi

where

F(0) = {0872, 8t, 0(1 -t) - 072, 1 - 0)/O S<il- 0/2}

for 0^0<1 and

F(l) = {(1/2, t, 1/2 - t, 0)/0 = t £ 1/2} U (0, 1/2, 1/2, 0).

Define for 3/4 < a = a0, where a0 is so chosen that

o0(l- 7/8(1 +«,))= i,

the family:

X,(«) =     U     Y(fi),

where

f/7      /32 7      &1 \rw-{(T-i+^'*«,-*-TI+='1-')

70     )
where 0 < / < 1-> for 0 < 8 < 1.

8(1 + a)/

For ao <a < 1 define
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Xi(a) =      U       Y(8)

where

'<»-{((»-£)»■.*»»-<»-(>-5^ »■.>-»)

where 0 S / g 1 - (1-|3J> for O^fti 1.

For a = l define A\(l) =Uos/3<;i ̂ (0) where

Y(8) = {(B2/2, Bt, 8(1 - t) - 072, 1 - ft/0 glgl- /J/2}.

Now it is not hard to check that the family Ai(a) is semimonotonic

and that each Ai(a) is a solution to the game J except Ai(l) because

the element (0, 1/2, 1/2, 0)$.X1(l)\JdomlXl(l). If X{(a)=X1(l)

U(0,1/2, 1/2,0) then Xi (I) is a solution to J. But {Xi(a): 0ga<l}

together with X{ (1) is not semimonotonic for corresponding to

(0, 1/2, 1/2, 0) there exists no element x£Ai(a) for any a>3/4 with

ax^(0, 1/2, 1/2, 0). Further the family {Xi(a): Ogcxg 1} is not

fully monotonic because corresponding to the element (0, 1/2, 1/2, 0)

£Ai(3/4) there exists no element y£Ai(l) with the property that

y Si 3/4 (0, 1/2, 1/2,0).

Hence it is clear that the conditions of Theorem 1 as well as Theorem

2 are violated. Moreover it is not difficult to check that Ai(S;) = 0

for all j and as such we can take di = l. Hence this family {Xi(a)}

can be used to produce product solution to arbitrary games of the

form J® K—solutions which Theorem 1 or Theorem 2 cannot pre-

dict.
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