ON THE D-SERIES OF A FINITE GROUP

J. BUCKLEY

Introduction. Let G be a group. The lower central series of G is defined inductively by: $G_1 = G$ and $G_{k+1} = [G_k, G]$ the subgroup of G generated by the set of all commutators $[\sigma, \tau]$ where $\sigma \in G_k$ and $\tau \in G$. By definition G is nilpotent if $G_k = 1$ for some positive integer k.

Let Z[G] denote the integral group ring of G and I the ideal spanned by the elements $\sigma-1$ where $\sigma \in G$. I is called the augmentation ideal or the fundamental ideal of Z[G] and the powers of I give rise to the descending series of fully invariant subgroups of G,

$$\cdot \cdot \cdot \subset D_2(G) \subset D_1(G) = G$$

where $D_k(G)$ consists of those elements σ in G such that $\sigma \equiv 1 \pmod{I^k}$. We refer to this as the D-series of G.

For each k, $G_k \subset D_k(G)$ and the map $\Delta : \sigma \to \sigma - 1$ induces a homomorphism Δ_k from G_k/G_{k+1} into I^k/I^{k+1} . The image of Δ_k is the set of homogeneous Lie elements (in the $\Delta \sigma$) in the module I^k/I^{k+1} , and the kernel is $G_k \cap D_{k+1}/G_{k+1}$. (See Cohn [1].) Also $G_2 = D_2(G)$ for all groups, and all $G_k = D_k(G)$ if G is a free group. (This last result is due to Magnus [5].)

It has been conjectured that all $G_k = D_k(G)$ for arbitrary groups G. We do not prove this, but we do show that for *finite groups* $\bigcap G_k = \bigcap D_k(G)$, or, in other words, that the groups at which the two descending series become constant coincide. This has the immediate corollary that a finite group G is nilpotent if and only if $D_k(G) = 1$ for some positive integer k.

We begin with the following characterization of p-groups among all finite groups. This theorem appears in a paper of Gruenberg [1]. We give a simple proof of it here.

THEOREM 1. Let G be a finite group. G is a p-group for some prime p if and only if $\bigcap I^k = 0$.

PROOF. Suppose G is a finite p-group for some prime p. The canonical ring homomorphism from Z[G] to $\Gamma[G]$, the group algebra of G over GF(p) the field with p elements, takes I onto the augmentation ideal Δ of $\Gamma[G]$. It is known (Jennings [4]) that Δ is precisely the radical of $\Gamma[G]$ and hence $\Delta^{l}=0$ for some positive integer l. Consequently $I^{l} \subset pZ[G]$. Hence $\bigcap I^{k} \subset \bigcap p^{k}Z[G]$ which is clearly 0.

Conversely, if $\bigcap I^k = 0$, it follows that $\bigcap D_k(G) = 1$ and hence that $\bigcap G_k = 1$. Since G is finite, this implies that G is nilpotent, hence a direct product of p-groups. To show G is a p-group, we show that if G

contains commuting elements σ and τ of different prime power orders p and q, then $\bigcap I^k \neq 0$. If $\sigma' = \sigma^{p-1} + \cdots + 1$ and $\tau' = \tau^{q-1} + \cdots + 1$, then $(\sigma - 1)\sigma' = 0$ and $(\tau - 1)\tau' = 0$. Let ap + bq = 1, and set $\alpha = a\sigma' + b\tau'$; then $(\sigma - 1)(\tau - 1)\alpha = 0$. Under the augmentation map, α goes into ap + bq = 1, whence $\alpha = 1 - \beta$ for some β in I. Therefore $\beta(\sigma - 1)(\tau - 1) = (\sigma - 1)(\tau - 1)$, and since $\beta \in I$ and $(\sigma - 1)(\tau - 1) \in I^2$, it follows that $(\sigma - 1)(\tau - 1) \in I^k$ for all k.

The following result proves useful. We omit the proof which is straightforward.

LEMMA 1. Let G be a finite group. Then $\bigcap G_k = \bigcap N$ where N runs through all normal subgroups of G of prime power index.

Let N be a normal subgroup of G. The following standard facts can be found in Fox [2]. The kernel of the canonical ring homomorphism $Z[G] \rightarrow Z[G/N]$ is the ideal generated by the set of all $\tau-1$, $\tau \in N$. If we denote this ideal by I(N), then $Z[G/N] \simeq Z[G]/I(N)$. Also, if $\sigma \in G$ and $\sigma-1 \in I(N)$, then $\sigma \in N$.

LEMMA 2. Let N be a normal subgroup of G. N has prime power index in G if and only if $I(N) = \bigcap [I(N) + I^k]$.

PROOF. If we identify Z[G/N] with Z[G]/I(N), the kth power of the augmentation ideal of Z[G/N] is identified with $[I(N)+I^k]/I(N)$. The result now follows immediately from Theorem 1.

THEOREM 2. Let G be a finite group. Then $\bigcap G_k = \bigcap D_k(G)$.

PROOF. Since $G_k \subset D_k(G)$ for all k, the inclusion one way is clear. To show $\bigcap D_k(G) \subset \bigcap G_k$, let $\sigma \in \bigcap D_k(G)$. Then $\sigma - 1 \in \bigcap I^k$, whence for all normal N of prime power index, $\sigma - 1 \in I(N)$. Therefore $\sigma \in N$ for all such N, and $\sigma \in \bigcap G_k$.

COROLLARY 1. Let G be a finite group. G is nilpotent if and only if $D_k(G) = 1$ for some positive integer k.

REFERENCES

- 1. P. M. Cohn, Generalization of a theorem of Magnus, Proc. London Math. Soc. 57 (1952), 297-310. (See correction in same volume.)
 - 2. R. H. Fox, Free differential calculus. I, Ann. of Math. 57 (1953), 547-560.
- 3. K. Gruenberg, The residual nilpotence of certain presentations of finite groups, Arch. Math. 13 (1962), 410-417.
- 4. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
- 5. W. Magnus, Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math. 177 (1937), 105-115.