TERM-BY-TERM DIFFERENTIABILITY OF
MERCER’S EXPANSION

T. T. KADOTA

Let K(x,y), 0=x, y=<1, be a real, symmetric, continuous and non-
negative-definite kernel on [0, 1] X [0, 1]. Thus, the integral operator
generated by K has nonnegative eigenvalues and the orthonormalized

eigenfunctions A\; and ¢;, =0, 1, 2, - - - . Then, according to Mercer’s
theorem [1],
1) K(x,y) = Z Nidi(%) i (3)

uniformly on [0, 1]X [0, 1]. This paper concerns with term-by-term
differentiability of the above series while retaining the same sense of
convergence. In particular, we obtain a condition, explicitly on K, for
such differentiability.

TrHEOREM. If (3%"/(0x"0y™))K(x, ) exists and is continuous on
[0, 1]1X [0, 1], then ¢, the nth derivative of ¢, exists and is continuous
on [0, 1] for each i=0,1, 2, - - -, and

2 ™, .

2 K(x, y) = Z A (x)9i (9)

ax"dyn

uniformly on [0, 1] X [0, 1]. Conversely, if ¢ exists and is continuous
on [0, 1], and if the series of (2) converges uniformly on [0, 1]X [0, 1],
then (9%»/(0x"0y™))K(x, y) exists, is continuous and is equal to the
limit of the series.

ProoF. The method of induction will be used.

(a) Proof of the first assertion. First, since (d2~/(9x0y™))K(x, v)
exists and is continuous in (x, y), existence and continuity of ¢ can
be readily established by differentiating # times both sides of

1 1
(3) ¢t(x) = ;\“f K(x: 3’)4’:‘()’)'13’, i =0, 1,2, ---
1Yo
For notational simplicity, define for k=1, 2, - - -, n,
2k
Ky(x, y) = K(x,y),
x(%, ) pyrem (x, )

RO (5,9) = Ku(%,9) — 3 Apt” @ée (3).
=0
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The following steps will be taken to establish the assertion for n=1.

1°. R9(x, x) =0, 0=x=1, for every j.

Suppose RY(xo, x0) <0 for some x,& [0, 1]. Then it follows from
continuity of RY that there exists a neighborhood xo— 6 <x, y <xo+8
where R (x, y) <0. Thus, from (1),

z0+8 20+8

zo+d . ©
G
o> [[TR @iy = S [ et@ar [T et rarzo,
zg—3 1=5+1 zg—3 xg—3

a contradiction.

2°. The series of (2) with =1 converges uniformly in x for every
fixed ¥ and also in y for every fixed x; thus its limit, denoted by
K} (x, y), is continuous in x for every fixed ¥ and also in y for every
fixed x.

Note Y.; )\,-,q.'n’ (x)| 2 converges since its partial sums form a non-
decreasing sequence bounded by K;(x, x) as seen from 1°. Define

M = max K, (x, x),
0571

which exists since K; is continuous by hypothesis. Then, from
Cauchy’s inequality,

n 2 n n

A @l 0| S TNl @ P XN 0l ) ]2
(4) =m t=m ) =m
=M N e ]2

t=m

Hence, Y :\p! (x)¢! (y) converges uniformly in x for every fixed y.
Similarly, it converges uniformly in y for every fixed x.

3°. Ki(x, y) =K¥(x, v).

Note K;=K7, a.e. [dxdy], since both K; and K} are measurable
and, from 2° and (1),

J uf:[’ﬂ(u’ 1) — K, o) |duds

= j;yf:lﬁ(u, v)dudy — ;)\.- fozdn' (u)du fqus,! (v)dv

B f f Ky, duds — Kz, ) + K(x,0) + K, 3) — K(0,0)
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for every x and y. Then, from Fubini’s theorem [2], for almost every
x, Ki(x, y) =K} (x, y) for almost every y. But, since for every fixed
x both K; and K} are continuous in vy, for almost every x the equality
holds for every y. Hence, for every y the equality holds for almost
every x. However, for every fixed y K; and K} are continuous in x
also. Thus, the equality holds for every x and y.

4°. The series of (2) with #=1 converges uniformly in x and y
simultaneously.

From 3°,

Kl(x, x) = Z >\.| ¢;’ (x) '2.

Observe that the partial sums of the series form a nondecreasing
sequence of continuous functions converging to a continuous func-
tion. Hence, according to Dini’s theorem, the convergence is uniform.
Then, by applying Cauchy’s inequality (4) again, we conclude that
> i Nip! (x)¢! (y) converges uniformly in x and y simultaneously.

Next, note in the preceding proof for n=1 that we have used only
the continuity of ¢; and uniform convergence of (1) together with
N.=0,7=0,1, 2, - - -, but not the orthonormality of {q&,-}. Hence,
upon replacement of ¢,, K, ¢!, K1, Kf and R? by ¢®, K, ¢*Y,
Ky, K§,1 and RY), respectively, the preceding proof establishes the
assertion for n=~k-1 if it holds for n=Fk. Therefore, by induction,
the assertion holds for every n.

(b) Proof of the converse statement. To prove for n=1, note that
K{(x, y) is continuous in both x and ¥ since, by hypothesis, the series
of (2) with =1 converges uniformly in x and v simultaneously. Note
also that

®) foyfozKr((“’ Dduds = 2 f o ) f oL
= K(,5) — K(z,0) — K(0, 3) + K(0,0),

where the second equality follows from (1). Now, from (3), differ-
entiability of ¢, implies that of K(x, 0) and K (0, y). Thus, differenti-
ability of the left-hand side of (5) with respect to y and then x, im-
plies existence of (92/(dxdy))K (x, y). Hence, upon differentiation of
both sides of (5),

2

K* . ) d
X =
R dxdy

Through a similar argument, we establish the converse statement

K(x, ).
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for n=k-+1 if it holds for n==Fk. Hence, by induction, it holds for
every n.
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SOME GENERALIZATIONS OF OPIAL'S INEQUALITY
JAMES CALVERT

The inequality [&|uu’| <a/2f2|u’|? which is valid for absolutely
continuous # with #(0) =0 has received successively simpler proofs by
Opial, [5], Olech [4], Beesack [1], Levinson [2], Pederson [6], and
Mallows [3]. It is the purpose of this paper to use the method of
Olech to obtain some more general inequalities.

THEOREM 1. Let u be absolutely continuous on (a, b) with u(a) =0,
where — o Sa<b< x. Let f(t) be a continuous, complex function de-
fined for all t in the range of u and for all real t of the form t(s)
=f2|u'(x)|dx. Suppose that [f(t)| <f(|t]), for all t, and that f(t)
<f(t) for 0<t,<t,. Let r be positive, continuous and in L'~?|a, b],
where 1/p+1/g=1, p>1. Let F(s) = [3f(x)dx, s>0. Then

[ ot [( ) (7 49)

with equality iff u(x)=A[%r'~9 The same result (but with equality for
w(x) = [2r'=9) holds if u(b) =0 and — o <a<b=< .
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