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1. Introduction. E. S. Wolk [9] has discussed two modes of con-

vergence of nets in partially ordered sets (in our terminology these are

2-convergence and 3-convergence). In particular, he gave a partial

answer to the following question: What is a necessary and sufficient

condition on a partially ordered set that these two modes of conver-

gence be equivalent? In this paper we discuss 1-convergence and

2-convergence, asking the same question.

2. Definitions. By a partially ordered set (poset) we mean a set 5

with a transitive, reflexive relation < such that if x<y and y <x, then

x = y. We write x<y iff x<y and X9*y. A subset B of 5 is called up-

directed (down-directed) iff for a, b(EB there is c£5 such that

a<c and b<c (c<a and c<b). When we refer to a net (f; D, =i) in S,

we follow Kelley [4].

We now give the two definitions of order convergence that we wish

to study; we also give the definition of 3-convergence appearing in

Wolk.
Definition 1. A net (/; D, ^) in a poset (S, <) 1-converges to

yE.S iff there is y(ED and nets (L; D, ^) and (U: D, ^) in 5 such

that

(la)  if a^B^y, then L(B) <L(a) <f(a) < U(a) < U(B),
(lb) y = sup {L(a): a^y} =inf {U(a): a^y}.

Definition 2. A net (/; D, ^) in a poset (S, <) 2-converges to

y€zS iff there are nonvoid subsets M and N of 5 such that

(2a)  M is up-directed and N is down-directed,

(2b) y = sup M='mi N,

(2c)  if mE:M and n^N, then there is BE.D such that m<f(a) <ra

ior all a^B-
Definition 3. A net (/; D, ^) in a poset (S, <) 3-converges to

^£•5 iff there are nonvoid subsets M and N oi S such that

(3a) y = sup M = ini N,

(3b) if m£Af and n£:N, then there is BElD such that m<f(a) <n

for alia ^j8.
It is easy to see that if a net 1-converges to y^S, then it 2-con-

verges to y. Similarly, 2-convergence implies 3-convergence. Wolk
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gives an example that shows that 3-convergence need not imply 2-

convergence and, hence, 3-convergence need not imply 1-convergence.

In §3 we give an example that shows that 2-convergence need not

imply 1-convergence and, hence, 3-convergence need not imply 1-

convergence. In §4 we give a sufficient condition on the poset iS, <)

that 1- and 2-convergence be equivalent.

The genealogy of these three modes of convergence is not com-

pletely clear. 1-convergence in a poset seems to have been first for-

mulated by Birkhoff [l, p. 32], It is interesting to note that he does not

repeat this definition as such in the second edition [2, p. 60]; rather

he defines a variant of 1-convergence in a poset by first embedding

the poset in a complete lattice and therein applying the usual general-

izations of the notions of limit inferior and limit superior of a se-

quence. 2-convergence is defined in McShane [6] and seems to be due

to him. The major innovation here is that the upper and lower

"pinching" of the given net is done in terms of the poset alone,

rather than in terms of two other nets, each of which is defined on the

same directed set as the given net. It is this lack of comparability be-

tween the domain of the net and the up- and down-directed sets M

and N that prevents 1- and 2-convergence from being equivalent.

3-convergence in the form given in Definition 3, is due to Wolk, who

gives references to Rennie [7] and Ward [8]. The latter reformulates

3-convergence in terms of filters, referring the reader to Rennie for

the notion of 3-convergence in terms of nets. In turn, Rennie gives

references to Birkhoff [2] and Lowig [5], An examination of these

papers seems to indicate that while the germ of the notion of 3-

convergence might be said to be in Birkhoff, it is in Lowig that this

mode of convergence was first given in something like its present

form.

3. Example. Let w be the first nonfinite ordinal and 0 the first

noncountable ordinal. Denote by co' the set of all ordinals not ex-

ceeding w and by 12' the set of all ordinals not exceeding £2. We let

S=(o'X&' and think of S as in the figure.

We define a partial order < on 5 as follows:

(1) If (a, o)^(co, $2), then (a, b) <(co, fi),

(2) (a, b)<ia, c) iff b<c,

(3) If aj^di, b^<a, and a^b, then (a, c)<ib, d) iff a<b and c<d,

(4) If a^o>, o^fi, and cj^fi, then (a, 6)<(«, c) iff there is an

ordinal / having no immediate predecessor such that b<t<c.

Letting Z denote the positive integers, we define the net (/; Z, ^)

in S, where 2: is the usual order for Z, by/(ra) = (w, fi), for nEZ.

Letting M= {(a, b)ES:a^co, b^Q} and N= {(co, fi)}, it is easily
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I M^.^^(u,n6 ^> ii(2,i)     >i(i,D

checked that AI is up-directed, N is down-directed, and, letting

y=(o3, fi), that sup Jlf = inf N = y. Since M, N, and (/; Z, ^) also

satisfy (2c) of Definition 2, it follows that (/; Z, S:) 2-converges to y.

If we assume that (/; Z, Si) 1-converges to y, referring to Defini-

tion 1 and the figure, it follows from (la) and the fact that the ele-

ments of the range of / are not mutually comparable, thatZv= {L(a):

a s£7} CM. Since Ly is countable it is clear that the statement sup Ly

= y cannot hold. Thus (/; Z, ^) does not 1-converge to y.

4. Sufficient conditions for equivalence. In this section we give a

sufficient condition on the poset (S, <) that 2-convergence be equiv-

alent to 1-convergence. One such condition (in fact, all three types of

convergence are equivalent under this condition) was noted by

Rennie, namely that (S, <) be a conditionally complete lattice. We

have approached the problem by imposing a certain kind of counta-

bility assumption on the ordering of the poset. Our attempts to ob-

tain a condition similar to that which Wolk imposed in order to ob-

tain a near-sufficient condition that 2- and 3-convergence be equiva-

lent have been unsuccessful without the imposition of some sort of

countability assumption at one place or another.

Definition 4. A poset (5, <) is said to have property B iff for each

nonvoid subset J oi S and yG5
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(4a) if / is up-directed and y = sup J, there is a countable up-

directed subset C of J such that sup C = y

(4b) if / is down-directed and y = inf /, there is a countable down-

directed subset C oi J such that inf C = y.

Theorem. Let iS, <) be a poset with property B. Let if; D, ^) be

a net in S; then if; D, =i) 1-converges to yES iff it 2-converges to yES.

Proof. Since 1-convergence always implies 2-convergence we need

only verify the converse. By property B there are countable subsets

M' and N' of M and N, respectively, such that sup M' = sup M = y

= inf A=inf N'. Since M' and N' are up- and down-directed, respec-

tively, there is no loss of generality in assuming that, letting M'

= {mi, m^ ■ • ■ } and N'= {rai, ra2, • • • }, razi<raz2< ■ ■ • , and

rai>ra2> • ■ • . Let Xi=[m,, n/\ (*=1, 2, • • ■) and note that Xx

DXiD • • ■ . For each aED, denote {fif3):8ED, B^a} by Ta. We

begin by choosing aiED such that TaiC/Xi. Suppose we have chosen

oti, cm, ■ ■ ■ , an such that TaiC/Xi, ai^a2^ ■ • • ^a„, and a.-^ay for

l<i<j<n. We then try to choose a„+i. Now, there is 8'ED such

that TpC/Xn+i and B'^an. If for each 8^8' there is an i, l<i<n,

such that B^cti, then a^B^B' and TpDT^DTai. Also, a,ga„g/3'

and so Ta~)T$>. Hence Tp = Tp for all 8^8'. Ii this is the case, then

for each mEM and nEN, TpQ[m, ra]. So if xETp, xE[m, ra]. It

follows that x = y. Hence (/; D, =^) is eventually constant and we can

easily find nets (£/; D, S;) and (Z; D, ^) satisfying the appropriate

conditions. Thus we can assume that 8^8' can be found such that

8$,on (t=l, 2, • • • , ra). Let an+i=B. We have Tan+lQXn+i, ai^a2

^ • • • ^«n^«n+i and aisfeay for l<i<j<n + l. It is thus clear that

we may assume that there are given akED (^ = 1,2, • ■ ■ ) such that

ai^cife^ • • • , aisfcay for l<i<j, and TakEXk.

It is convenient to denote mi by lai and n, by uai (*= 1, 2, • • • ). Of

course lai<lai+1<y<uai+1<uai.

We now define nets (L; D, ^)and((7;£>, ^). Let 7= ai and define

Lia/) =la< and Uia/) =uai. If a ^7, define Z(a) =/T and Z7(a) =ra7. If

«^7 we proceed as follows: If a^at for all i, define Lia) = Uia) =y.

If it is false that a^a, ior all i, then there is a least j such that a ^ ay.

Note that j>1 and a^a* for k=j, j+1, • • ■ ; also, either a gay or

they are not comparable. Define Lia) =laj^ and (7(a) =Ma_,.

Now suppose that B^a^y. If a = ai=7, then L(a)<Z,(/3) since

L(^) =Zai for some i or Z,(/3) =y. Next, suppose that a = at for some

i>l. If /3 = ay for some j, then Z(a) <L(f}) since jS^a. If |8?^ay for

all j, then either /3^a^ for all k or there is a least & such that 8^ak.

In the former case, Z(a) <L(8) =y.  In the latter case, lai = L(a)
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<L(B)=lat_l since k — l>i. We now suppose that a.9*cn for all i. If

aiictj for all /, then L(a) <L(B) =y. Otherwise, there is a least/ such

that a^otj and />1. Since B = a> H B = ai f°r all *i then L(a)=lai_1

<L(/3) =y. Otherwise, there is a least & such that /3=£at. Now &>/

since if k<j then jS^a^ay-is^a* and this is contradictory. Hence

L(a) = lai_l<lat-1 = L(8). Thus we have shown that if B = <* = 7, then

L(a)<L(B). Similarly, U(B) < U(a).
Next, if B^7 and B =«< for some i, then /a< = Z(/3) </(/?) G r^C^i-

HB^*oii for all i and it is false that B=aiIor all ^. then there is a least

j such that B=£otj- Thus B = <*i-i and L(B)=l{,i_1. Since Xj-OT,,,..,

we have L(B)<f(B). If j8^a< for all t, then L(B)=y. Also TBCTai
for all * and so r^Cfd rat.Crii-i ^.= {y}- Since Tp9*0 we have

r^= {v}. Hence/(/?) =y and so L(B) </(/3). Similarly, /(^) < U(B).
We now have: If B = <* = y, then

L(a) < L(B) <f(B) < U(B) < U(a).

We conclude the proof by observing that sup (L(a): a =S 7}

= inf { U(a): a ^7} = y.

We make two last remarks: (1) Wolks "Property A" and our own

property B are somewhat related constraints on a poset. At the same

time, there are examples showing that neither implies the other. (2)

Property B does not imply that all three types of order convergence

considered here are equivalent.
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