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Introduction. Let {Z'n, ra^O}, Zo = l, denote the random variables

in a Galton-Watson process with generator

(1) f(s) -£[*■«]- JlPks\ |*| £1,
k=0

where pk is the probability for a particle in the rath generation to

produce k particles in the (ra + l)th generation, independently of ra.

Let {Z[, t^O}, Z'0= 1, denote the random variables in a continuous-

parameter Markov branching process with generator

-     oo -

(2) 8(5) = b    Y ?*** - s   ,     I s I g 1,
_ *=o

where 6A + 0(A) is the probability for a particle existing at time t

to die in the interval (t, £+A), independently of t, and each qk(qi = 0)

is the probability for a particle dying at time t to produce k particles

at time t, independently of t.

These assumptions imply that {Zn, w^OJ and {Z't, t^O] are time

homogeneous Markov branching processes.

The purpose of this note is to show how the fundamental limit

theorems for continuous-parameter Markov branching processes can

be derived using the corresponding theorems for Galton-Watson

processes. In a brief summary, each limit theorem is a statement

about the limiting properties of certain functions, of the Z„ or Z't-

processes, whose values are probabilities, generating functions or

distribution functions. In a natural way, these values associate to

each limit theorem a metric space in which the limiting behavior is

studied. Using the metric space as a common reference, it is possible

to relate the limiting behavior of a Z,'-process to that of a Z„-process.

This relation is achieved by the following result (first proved by

J. F. C. Kingman in the special case I=(0, 00), [l, p. 594-597]):

(K) Let tt be a continuous mapping of [0, 00) into a metric space X.
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Assume that for each t in (0, oo) it has either a right- or left-limit at t.

Let 1= {a<t<b},0^a<b^ oo. Assume that for each AC/.I the sequence

7t(raA) converges to x(A)£X as w—>oo. Then

(i) x(A) does not depend on AG/; i.e., x(A) =xo for all AG/.

(ii) irit) converges to x0 as *—» oo.

Proof. The essential fact in this proof is the following property of

real numbers, H. T. Croft [2] and J. F. C. Kingman [l].

(C) Assume Uk, k = l, 2, 3, • ■ ■ , are open unbounded subsets and I

is an open interval, all in [0, oo). Then there exists a real number A0G/

such that, for each Uk, nA^EUk for infinitely many positive integers ra.

Assume Ai, A2G/ are such that x(Ai) =limn ir(wAi)7^1im„7r(raA2)

= x(A2). Then, the convergence of 7r(wA) and the right- or left-limit-

properties of it imply the existence of two disjoint neighborhoods Ai

and A2, of x(Ai) and x(A2) respectively, and two unbounded open

subsets Ui, U2Q [0, oo) such that, for tE U,-, irit) ENit i=l,2. Apply-

ing property (C) to Ui, Ui and /, there exists a A0G/ such that raA0

is in each of U\ and £4 for infinitely many values of ra. This contradicts

the convergence of ir(raA0) to x(A0). Therefore for some x0GA and all

AG/, lim„<00 7t(raA) =x0.

For the same reasons, the nonconvergence of irit) to xo, as t—* oo,

would imply the existence of an open unbounded set £/C [0, oo) and

a neighborhood N of x0 such that ir(i) G A for all tE U. Applying (C)

to U and I gives the existence of a A0G/ such that nAaEU for

infinitely many values of n. However this would contradict the con-

vergence of ir(raAo) to Xo; so that, lim^^ir^) =xo, proving (K).

In the place of an exhaustive development of this method, we have

decided to illustrate its applicability by extending some of the funda-

mental results for Galton-Watson processes.
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of Theorems 1-3 and for suggesting the extension of the local limit

law stated in Theorem 4. The author also expresses his gratitude to
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Preliminaries. Again we let/(s), (1), and 8(5), (2), be the respec-

tive generators for the Z„ and Z,'-processes. We list for convenient

reference the following moment calculations:

(3) E[Z„] = p-
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where p=f'(l).

(4) E[Z[] = e°>

where a = S'(l).

pn(pn - 1)

Var[Zx] —-,        P9*l,
Var[Z„J = ■ p2- p

n Var[Zi], p = 1,

f S"(l) - S'(l)
r     , -eat(eat — 1),        a^O,

(6) Var[Z/]= S'(l)

.   S"(l)*, a = 0.

We also have need for some knowledge about the Z (-process which

allows us to translate weighted moment conditions on its generator

into the same conditions on Zt. The following is adequate for the

purpose of this note.

Proposition 1. Let {qk}k*i be the infinitesimal branching proba-

bilities, (2), for the Z't-process.  Then for arbitrary positive integer a,

00 00

Y (*" log k)qk < oo ̂  Y (ka log k)P[Zl =*]<«,    A > 0.
k=2 k=2

(For a coherence in presentation, we have chosen to postpone giving

a proof of this proposition until the Appendix of this note.)

Limit theorems. A general type of limiting behavior for a Galton-

Watson process with p>0, (3), is described by the normalized process

(7) Wn  =  P-"Zn.

Since   {Wn,  ra^O}   is  a  nonnegative   martingale  with  £[lFn]=l

[3, p. 14], we have always the existence with probability 1 of

(8) lim Wn = W.
n—.oo

However when p^l, IF is identically 0. Unless further restrictions

are placed on f(s), this degeneracy can also occur when p > 1.

A complete description of the case p > 1 is given by the following:

Theorem 1 (B. Stigum and H. Kesten, 1965, to be published,

[4]). Assume p> 1. Let Wn and W be defined by (7) and (8).
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(a) // E (*log k)pk= oo,        then E[W] = 0.

(b) // E (*log k)pk < <*>,       then E[W] = 1,
*»2

and the probability distribution of W

(i) either has a continuous density except possibly for a discontinuity

at the origin,

(ii) or it is concentrated at one point.

In the continuous parameter process with a as defined in (4),

(10) Wt'= e-^Z/,       a = b[h'il) - 1],

is also a nonnegative martingale with E[WY] = 1 [3, p. 108], and

(11) lim  W/= W

exists with probability 1. Again there is the possibility of W being

degenerate.

Our description of the continuous parameter case with a > 0 is

Theorem 1'. Assumea> 0. Let W/and W be defined by (10)and (11).

(a) // E**2 (* log k)qk=«>, then E[W]=0.

(b) // E**2 (* log *)ff*< °°, then E[W]=1
and the probability distribution of W

(i) either has a continuous density except possibly for a discontinuity

at the origin,

(ii) or it is concentrated at one point.

Proof. It is sufficient to restrict our attention to the family of

distribution functions defined by

(12) Hit, u) = P[e-"Z[ g u] =      E     P[Zl = *]    it^O).
£gexp(aO«

Let us examine Hit, u) more carefully. Assuming u is a point of

continuity for //(t, u), there exists a 5>0 such that the interval

ieatu — 8, earu + S) contains no integer since the Z/-process is aperiodic.

Now consider when t>r it<r is similarily handled). Then

Hit, u) - Hir, u) S      E      I P[Zl = *] - P[Z/ = k] |
Asexp(ar)u

{) +        E       p[zt=k}.
expCar)usfcsexp(oOw

The first summation in (13) involves a finite number of terms, and

therefore, using the continuity of each P[Z/ = k] in /, tends to 0 as t
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tends to r. The second summation in (13) vanishes when | ea'u — ea'u\

<8. Therefore for each point u of continuity of H(t, u), the left-hand

side of (13) tends to 0 as t tends to r.

This type of convergence for distribution functions is equivalent

to convergence in the metric space £ [0 g u < oo ] of distribution func-

tions H on [0, oo) with the Levy metric

d(Hi, H2) = ini{e\ Hi(u - e) - e g H2(u) g Hi(u Ar e) Ar e}  [5, p. 33].

Therefore the mapping x of (0, oo) into £[0gw< oo], defined by

t(1) = H(l, u),

is continuous. Consequently, we can use (K) with X = £[0^u<<x>],

it as defined above and 1 = (0, oo) to reduce the problem to a study of

the convergence in £[0^u<co] as ra—>oo of the distribution func-

tions, H(nA, u), associated with the Z^-process.

For each A in 7, {Z£A; ra ̂  0} is a Galton-Watson process with gen-

erator

A*)-   ±P[Zf, = k]s\ \s\   gi.
k-0

The moment calculations (3) and (4) show pw=E[Z'&] =eaA; and so,

the assumption a>0 implies p(A) > 1. Moreover, the distribution func-

tions for the normalized process (p(-A))~"Z„ii, (7), are precisely

H(nA, u). Applying Proposition 1, we have ^t^2(k l°g k)qk<^
&E[Z'A log ZA']<oo, A>0.

Therefore, each Z^A-process satisfies the conditions of Theorem 1.

Using Theorem 1 we can assert that, for each A in I, H(nA, u) con-

verges as ra—>co to a nondegenerate distribution Hw(u) satisfying

either (9) (a) or (b).

Applying (K), we know H(A)(u) does not depend on A and setting

H(u) =Hw(u), we can conclude that H(t, u) converges in the metric

of £ [0 g u < oo ] to H(u) as t—> °°, completing the proof.

Our next result is for Z„-processes with p<l.

Theorem 2 (A. Joffe, 1965, [6]). Iff'(l)<l, the conditional gen-

erating functions

*>(>)-'?'/:? > ms)-e[sh
I   - fn(s)

converge uniformly in any closed region, interior to {\s\ =l}, to a limit

g(s) which is analytic for \s\ <1, continuous at 5 = 1 with g(l) = 1 and

is therefore a generating function. In particular
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lim P[Zn = k\ Zn> 0] = coefficient of sk in gis).

Also, E\Z\ log Zi] < 00   is a necessary and sufficient condition for

g'(l)<°°.

(A. Joffe has in his paper a different necessary and sufficient con-

dition for g'(l) < 00 ; however, F. Spitzer has shown the two condi-

tions to be equivalent.)

The convergence properties stated in Theorem 2 show the con-

vergence of gn to g with respect to maxosejj2T | gn(«w) — gieie) \. Our

corresponding theorem for the continuous parameter process is

Theorem 2'. If a = S'(1)<0, the conditional generating functions

Fit, s) - Fit, 0) .   .

S 1 - Fit, 0) .ii.

where Fit, s) =E[sz>'], converge uniformly in any closed region, interior

to {| s\ = 1}, to a generating function gis). In particular

lim P[Z/ = k | Z/ > 0] = coefficient of sk in gis).
n—»«

Moreover,  E*°-2(^ l°g k)qk< °° is a sufficient condition for g'il) < oo.

Proof. The generating functions

00

Fit, *) = E P[Z/ = k]s\        \s\   g 1, l> 0,
k-0

can be characterized as the unique solution to

Fit, s) = se-"' + f h[Fit - t, s)]be-*"dT    and    Fit, I) = 1,

0 ^ t < oo,  I s\   gl,

where his) =S(s) — s, which for each t is a generating function in s.

This characterization is sufficient to show Fit, s) is continuous in

it, s) ior 0St and \s\ gl. Letting G[| s| ^l] denote the metric space

of all generating functions on |s|^l with the metric digi, g/)

= maxos»£2,r \giiei6)~ g2(e^) |, the mappings of [0, oo) into G, defined

by irit) = Fit, s), is therefore continuous.

For each A>0, the random variables \ZnA, ra^O} form a Galton-

Watson process with generator/(A)(s) =/r(A, s). So we again use (K)

with A" = C7[|s| Sl],irit)=git,s) and I=iO, 00) to reduce the problem
to the study of the Z^-process, A in I.
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The moment calculations (3) and (4) and the assumption a<0

imply that/(A)'(1) = eaA<l. Therefore Theorem 2 can be applied to

show the associated conditional generating functions ir(raA)=g^A)

converge in G[|s| gl] to a generating function g(A). Furthermore,

g(A)'(l)< °° if and only if XX2 (k log k)qk< 00. This follows from

Proposition 1 and the second part of Theorem 2.

Applying (K) with X, tt and I as defined above, we can conclude

that g(A) does not depend on A, A in I. Therefore setting g(s) = g(A)(s),

151 g 1, we can assert that g(t, s) converges in the metric of G [ \ s \ g 1 ]

to g(s) as t—><x>. This establishes Theorem 2'.

Another type of limiting behavior for Galton-Watson processes,

with p = 1, is given by

Theorem 3 (H. Kesten, P. Ney, F. Spitzer [7, Corollary 1,

p. 7]). If f'(l) =1 andf"(l) < 00 , the conditional distribution functions

"   2Z„ ~|

Hn(u) = P   -— g ra I Z„ > 0   , 0 g M < oo ,
Lra/"(i) ' J

converge for each value of u to l—e~u.

The convergence properties stated in Theorem 3 give the weak

convergence of the distributions Hn to the exponential distribution

e; i.e., lim,,.,*, Hn(u) =e(u) at each point u of continuity of e, where

e(u) = 0 for u < 0 and e(u) = 1 — e~" for u ^ 0. Our extension of Theorem

3 is

Theorem 3'. If a = S'(l) = 1 and &"(1) < 00 the conditional distribu-

tion functions
r 2Z/ ~1

H(t, u) = P\-— g u I Zt' > 0
l&"(l)t ' J

converge weakly to the exponential distribution e(u).

Proof. Consider the distribution functions

- 2Z' ~1

H(t, u)= P   -—— £u\Zt>0\=       E      P[Zi =°k\Z't> 0].
L8"(l)/ J     kiig"a)tu

Reasoning similar to that used in the proof of Theorem 1' shows the

mapping ir oi (0, 00) into £[0^u< =o], w(t)=H(t, u), is continuous

in t.
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The moment calculations (3)-(6) and the assumptions a = 0 and

S"(l)<oo imply that£[ZA] = l and Var[ZA] =£"(1)A< =c ; so that

for each A>0 the Gal ton-Watson process {Z'n^, ra^OJ satisfies the

conditions of Theorem 3. In particular

T    2Z' 1
(14) HOnA, u) = P   -^— ^ u \ Z'nA > 0

Inf^'il) ' J

where/(A)(s) is the generator of the Z^-process, A>0.

Therefore each sequence of conditional distribution functions

{//(raA, u), w^OJ, A>0, converges in the Levy metric to the ex-

ponential distribution eiu). Applying (K) with X = £[0;£m< co ],

irit) =//(/, u) and /(0, =0), we can assert that irit) and Hit, u) con-

verges as t—-><*> in the same sense to eiu), completing the proof for

Theorem 3'.

A finer analysis for the case p = 1 is the following:

Theorem 4 (H. Kesten, P. Ney, F. Spitzer [7, Theorem 6,

p. 33]). Assume /'(1) = 1 and zZt=2 ik2logk)pk< °°. Set d

= g.c.d. {k\ k^l, pk>0}. Let kin) be an integral-valued function of ra,

ra>0, with kin)/n bounded. Then

/ra/"(l)\2        ["2£(ra)l    r
(15) lim l^1)  exp   -±-   P[Zn = kin)] = d.

n-.» \    2    / Lra/"(1)J

Our extension of this result is

Theorem 4'. Assume a = 0 and zZt=2 (&2 log k)qk< <*>. Let kit) be

an integral-valued function of t, t>0, with kit)/t bounded as 2—>°o.

Then

/*s"(i)v    r2*(fli r

(This result was first given by Cistyakov [8] when S"(l) < oo.)

Proof. We define the mapping it of (0, oo) into the metric space

X=[0, oo)by

/7S"(1)\2       r 2kit)l    ,

Our assumption about kit) and the continuity properties of

P[Z't=kit)\ imply that irit) has either a right- or left-limit at each

t>0.
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When we consider the family of Galton-Watson processes

{Z'n&; ra>0] with generators fiA)(s) = ^2t-0P(Z'A = k)sk, our moment

assumptions and the result of Proposition 1 imply that each of these

processes satisfies the conditions of Theorem 4. Also each Z^A-process

is aperiodic. (The Z('-process is aperiodic.) Since tt(«A) equals the

argument of the left-hand side of (15), we can then apply Theorem 4

(with d=l) and assert the convergence of 7r(wA) as ra—>oo to 1 for

each A>0. An application of (K) with X= [0, oo), t as defined above

and /=(0, oo) is sufficient to determine the convergence asserted

in (16).

Appendix. (We shall give only an outline for a proof of Proposi-

tion 1.)

Outline of Proof. We first define a sequence {Yf, t>0}

(ra = l, 2, • • ■ ) of auxiliary processes by

F,(n) =oo if at least one rath generation particle is born at or before

time t,

= Z't otherwise.

Setting

A*)=PlF((b) = *|z„'=i])

^:)(o = p[Ft(B) = *|z„'=/]

it is easily verified that

(17) p{:+l\t) = Z <?,  f P%\* - u)ber"-du,        (k S 2, r]>[0),
,a2     J o

and

(18) pt\i) g />*"+1)(t) -+pk(t)        as ra -» oo,

uniformly on bounded ^-intervals.

Using (17), we have

(19) Y (k* log k)p';+1\t) = £ ii f ' L (k" log k)p%\t - u)be~Wdu.
*£2 J£2        J 0    *B2

It is sufficient to show

MW(t) = T,(k" log k)p?\t)
kii

is uniformly bounded for all ra on bounded {"-intervals.
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Using the convexity of x" log x and the fact that F,(n) given Z'0 =j

is distributed as the sum of j independent and identical copies,

F((n)(l), • • • , F,(n)(j), of F<B) given Z'0=l, we can write

£[(F((BVlogF((B,|Zo'=i]

g - E E[ijY{;\i))a logjY(;\i) I Zi = 1]
J  i-i

^ E 0*) logj*#*  (/)
**2

^ (/log.?) E *V°(fl +/ E (ft"log A)ft°°(/).
ij2 ti2

Substituting (20) into (19) shows

MC"+1)(/) s\zZif>ogj)q]] r\zZkap{:\t-u)\be-budu
L ya2 J J 0   L *£2 J

+ ( E/?y) f      E (*"log k)pTit - u) \be~budu.
\ iii /Jo   L tS2 J

Consequently the finiteness of Mln)it) ior all ra follows readily by

induction on ra from the finiteness of E^ss i^" l°g &)<Z*-

The same techniques can be used to show MMit) is bounded, uni-

formly in ra, on any bounded i-interval.

The argument is then completed by using the monotone conver-

gence of p(t\t) to pkit), stated in (18), to show

E ika log k)pkit) =  lim M(n)it) < 00

when zZw (&alog k)qk<co.To prove the converse, set<pik) = k"log k

and let r be the ramification time for the initial particle. Then

EU( supZ[ J    &; £[<KZ/); t g A]

since <bik) is increasing.

Since P(Z; = ife; TgA)=g,c(l-exp (-&A)), we have

(21) EU( supZ/ jl ^ E C*log*)flb(l - exp(-JA)).

It is not difficult to show that

(22) £[<KZA)] < 00 =* E L ( sup Z'M S 00.
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The result follows from (21) and (22).
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