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In a recent paper [3] MacCluer proves that if A is a bounded nor-

mal operator on a complex Hilbert space H then the extreme points

of the numerical range of A are eigenvalues of A. MacCluer's proof

uses the spectral theorem in an essential fashion. Our purpose is to

point out that a slightly stronger result is elementary, independent

of the spectral theorem and true for unbounded normal operators.

We show that if ||x|| = 1 and \ = {Ax, x) is an extreme point of the

numerical range then Ax = \x.

Theorem. Let A be a not necessarily bounded, normal operator on a

complex Hilbert space H, and let WiA) = {iAx, x): x£3D(^4), ||x|| = 1}.

If X is an extreme point of WiA), x£SD(^4), ||x|| = 1 and iAx, x) =X,

then ^4x=Xx.

(Recall that a closed operator A is normal if its domain £>{A) is

dense in H and AA*=A*A.)

Proof. Because W{eieiA — X7)) = ei6{W{A) — X) we may assume

that X = 0 and WiA) is contained in the closed right half plane

{z: Re z^O}. Clearly A+A* is symmetric and W(A+A*) is a set

of nonnegative real numbers; thus, by the generalized Schwarz in-

equality  [4,  §104].

(1) | ((A + A*)x,y) |2 g ((A + A*)x,x)HA + A*)y,y)ix,y £ SD(4)).

Suppose that x£aD(^4), ||x||=l and (Ax, x)=0. It follows that

(A*x, x)=0 and hence, by (1), i(A+A*)x, y)=0 (y££>04)). Be-

cause £>(A) is dense, iA-\-A*)x = 0. Let M be the (nontrivial) null

space of A+A*. For y in M

{Ay, y) = {y, A*y) = - (y, Ay) = - {Ay, y)*,

so that Re(^4y, y) =0 (y£M). Because 0 is an extreme point of W(A)

it follows that Im(^4y, y) is either nonnegative, or nonpositive for all

y in M. Suppose that Im(^4y, y)^0 (y£A7). Then, for S= —iA we

have {Sy, y)^0 (y£Af). Because x£SD(4), ||x||=l and (4x, x)=0

we have, (Sx, x) =0 and, by the generalized Schwarz inequality again,

(2) iSx, y) = 0        iy £ M).
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If A is bounded we see at once that M is closed and invariant under

A. Hence Sx=— iAxEM and ^4x = 0.

If A is not bounded we proceed as follows. Because A is normal

(A+A*)**, the closure of A+A*, is self adjoint. It follows that

ML= d<R((4 + A*)**) = c\&(A + A*).

Now let z£SD(^4), by [2, Lemma XII.7.1], there is a sequence (z„)

in S)(A*A) such that zn—*z and Azn—*Az. Because A is normal

A*zn—>A*z and hence

(Sx, (A + A*)z) = lim (-iAx, (A + A*)zn)

= lim ( — ix, A(A + A*)zn)

= lim (-ix, (A + A*)Azn)

= lim (—i(A + A*)x, Az„)

= 0.

Thus SxEMx± = M and, by (2), ^4x = i5x = 0. This proves our

theorem.

In conclusion we remark that the result that, for normal A,

(A+A*)** is self adjoint is given as an exercise in [2, XII.9.11].

An elementary proof can be based on the polar decomposition for a

normal operator [2, XII.9.10]. This in turn depends on the existence

of a square root for an unbounded positive self adjoint operator. An

elementary proof of this and of the polar decomposition are given

in [1].
Added in Proof. The bounded case of our theorem is obtained,

with essentially the same proof, by S. Hildebrandt, Uber den numeri-

schen Wertebereich eines Operators, Math. Ann. 163 (1966), 230-247

(Lemma 11) and is originally due to W. F. Donoghue, On the numeri-

cal range of a bounded operator, Michigan Math. J. 4 (1957), 261-263.

Neither of these references was known to the author when this paper

was written.
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