
CONES IN COMPLEX AFFINE SPACE ARE
TOPOLOGICALLY SINGULAR

DAVID PRILL

I. Introduction. A point of a complex analytic variety will be

called a topological regular point (TRP), resp. an analytical regular

point (ARP), if it has an open neighborhood which is homeomorphic,

resp. biholomorphic, to an open set in a finite-dimensional complex

vector space.

This paper shows one type of TRP is an ARP. A subvariety of C",

the w-dimensional complex vector space, 0<w< °°, is called a cone

if it is a union of one-dimensional linear subspaces of C™.

Let 0 be the zero vector in C". We shall prove the following:

Theorem. If 0 is a TRP of a cone, then the cone is a linear subspace.

Thus, for cones: If 0 is a TRP, then it is an ARP.

The idea of the proof is as follows: For XCCn, let X* = X- {o}.

The map p: (C)*—>CPn_1 onto (w—1)-dimensional complex projec-

tive space is the projection map of a principal C*-bundle. If V is a

cone, V* is a subbundle of (C™)*. Propositions 1 and 2 derive topo-

logical properties of the subbundle V* from the assumption that 0

is a TRP of V. These properties guarantee p(V*) is a projective

variety of order one. It is classical that if p(V*) is irreducible and of

order one, then V is a linear space. The lemma preceding the proof

of the theorem enables us to avoid any assumptions of irreducibility.

In contrast to our result, 0 is a TRP and not an ARP for the n-

dimensional variety

{(zi, • • • ,xn+1) G C"+1| x\ = xl\.

A normal variety is one for which the following "removable singulari-

ties theorem" holds:

If a function is

1. defined on the points of an open set which are ARP's

2. holomorphic

3. bounded,
then it can be extended to a holomorphic function on the entire open

set. It is not difficult to see that a point of a one-dimensional normal

variety is an ARP. Mumford [6], (see Hirzebruch [4]), has shown a

TRP of a two-dimensional normal variety is an ARP. Brieskorn [l]
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has observed that 0 is a TRP and not an ARP of the three-dimen-

sional normal variety

{ (Xx, Xi, X3, Xi) E C4 | Xi + Xi + XZ + Xi = 0}.

The result of this paper is contained in the author's 1965 Princeton

thesis. The author thanks his thesis advisor Professor Robert C.

Gunning and Dr. Dennis Sullivan for help.

II. Results.

Proposition 1. Let V be a k-dimensional cone for which 0 is a TRP.

Then, thejth homotopy group of V*, ttj(V*), is zero for 0^j^2k — 2.

Proof. V* is clearly arcwise connected, i.e., ir0(V*) =0. Let Ube a

neighborhood of 0 in V homeomorphic to a closed 2/fe-dimensional

ball. Choose a positive e so small that N= {z£ V\  | z\ ^e} C U.

Let r be the deformation retraction of V* along lines through 0

onto N*, a the inclusion of N* in U*, b the inclusion of U* in V*.

There are homomorphisms

a* o r* b±

Now b o a o r is homotopic to the identity of V*, so &* o a* o r* is an

isomorphism. But ir,-(17*) =0, l^j^2k-2. Hence 7ry(F*)=0, O^j

g2ife-2.
For ICO, let X+=p(X*).

Proposition 2. Let FCC" be a k-dimensional cone for which the

groups irj(V*), 0^j^2k — 2, vanish. Let H be a k-dimensional linear

subspace of C™. There is a commutative diagram of maps

a                  b
H+-» V+-► H+

i j i
a     ..        P        i

where i and j are inclusion maps. The composed maps a o b, b o a, and

|S o a are homotopic to the identity maps of their domains.

Proof. Triangulate CPn~l so that H+ and F+ are finite subcom-

plexes [2, Satz 4, p. 199]. The hypotheses of the proposition imply

that the restriction q = p\ V*, q: V*->V+, of the bundle p: (C")*

-+CP"-1 is a (2fe-l)-universal principal C*-bundle [8, pp. 100-102].

Similarly, r = p\H*, r: H*^>H+ is a (2&-l)-universal C*-bundle. By

the classification theorem [8, loc. cit.] there are bundle maps a*: H*
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—>V*, b*: V*—>H*. Let a and b be the corresponding maps of the base

spaces. The bundle p: (C1)*—>CP"_1 is (2w —l)-universal, so a* and

b* extend to maps a* and /3* of the bundle (C")*, which cover maps

a and 0 of CPn~x into itself. The compositions a ob, boa, (3 o a are

homotopic to the identity for the same reason: They are covered by

bundle maps into themselves of bundles over finite complexes which

are universal for a dimension one greater than that of their base

spaces. This completes the proof.

Let Hm(X) denote the rath homology group with integer coefficients

Hm(X, Z) of the space X.

Corollary 1. For Q£s£k—1, H2a(V+)^Z.

Proof. Proposition 2 shows V+ has the homotopy type of H+.

Thus Hm(V+)^Hm(H+) for all m. It is known [9, p. 362] that for the

projective space H+, H2s(H+)^Z for 0g<rg£-l.

Corollary 2. Let u and v be generators of H2k-2(V+) and, H2k-2(H+),

resp. Then j*(u) = ±u(v).

Proof. i*(p) = (io b o a)*{v) = f3*(j*(a*(v))). But a* and /3* are bi-

jective maps and iJ2*-2(H+)=H2*-2(F+)^Hr2)t_2(CP',-1)=Z. The

corollary follows.

To prove V irreducible we shall use the following:

Lemma. Let W be a compact complex analytic space and X and Y

closed subvarieties with W = X \J Y, dim X (~\ Y < s. Then,

His(X) ®H2,(Y)^H2,(W). The isomorphism is ix@— iv, where iz and

iv are the homology maps induced by the inclusions XQ.W, resp.

YCW.

Proof. We may triangulate W so X, Y, XC\ Y, axe. subcomplexes

[2,Satz4, p. 199]. The complex XC\ Y has dimension less than 25 — 1,

so

hu{x r\Y) = f28_!(z r\ Y) = o.

By the exact Mayer-Vietoris sequence,

0 = HU(X C\ Y) -* H2s(X) @ Hu(X) *"    "*"> HU(W)

-* H2,-i(X f\ Y) = 0.

The lemma follows.

Theorem. Let V(ZC" be a cone of dimension k with ir,-(V*) =0 for

0^j^2k — 2. Then V is a linear subspace of O. In particular when 0
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is a TRP of a cone, the cone is a linear subspace and 0 is, a fortiori,

anARP.

Proof. For any irreducible, compact, complex, s-dimensional

analytic space, H2,(X)^Z and Ht(X)=0 for all t>2s [2, Satz 8,

p. 211]. Consequently, from the lemma and Corollary 1 we conclude

that exactly one branch, V\, of F+ has dimension (k — 1). Moreover,

the inclusion V\ C V+ induces an isomorphism of H$k-z( Vt) onto

Hik-2(V+). Corollary 2 showed the images in H^-iiCP"-1) of gener-

ators of Hik-i{V+) and of H2k-2(H+) under the homology maps in-

duced by the inclusions F+CCPn_1 and H+CCP"-1 are equal (up to

sign).

Select a linear subspace L+ of CPn~~l of dimension n — k — 1 which

intersects H+ transversely in one point and Vt transversely in finitely

many regular points, i.e., a subspace L+ which is in general position

with respect to both H+ and Vt■ The topological intersection num-

ber of L+ and Vt equals (up to sign) the topological intersection

number of L+ and H+, ± 1. (See [7, pp. 257-268].) Van der Waerden

[9, p. 352] shows the topological and algebraic intersection numbers

are equal for appropriate orientations. This means that Vt and L+

intersect in exactly one point, i.e., Vt is of order one. It is well known

[5, pp. 32-48] that if Vt is irreducible and of order one, then the cor-

responding cone V\ is a linear subspace.

We now show Vi = V. We may write V+ = Vt W Vt W

• • • \J Vt yJE+ where F2+, • • • , F,+ are branches of F+ of a fixed

dimension m,0^m<k — l, and dim E+<m. Repeated applications of

the lemma show Him(V+) has rank I. By Corollary 1, /= 1. Therefore

V\ = F+ so V\ = V is a linear subspace.

Proposition 1 showed that if 0 is a TRP of a ^-dimensional cone V,

the cone satisfies 7r;( V*) = 0 for 0 ^j ^ 2& — 2. By the above argument,

the cone is a linear subspace and 0 is a fortiori an ARP. This com-

pletes the proof of the theorem.
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REPRESENTATION OF 0 AS  ££_*€*£

J. H. VAN LINT

Abstract. If e^are independent identically distributed random vari-

ables with values 0 and 1, each with probability J then

/  +n \      / 3 \1/2

P(   Z €^ = 0j~f—J    N-*'\

1. Introduction. Recently P. Erdos asked the following question

(oral communication1). If A(N) denotes the number of representa-

tions of 0 in the form ^2t~-N ^k, where ek = 0 or 1 for —N^k^N

then determine the asymptotic behavior of A (N). We shall prove that

(1) A(N)~( — J    22"+W-3/2.

Another way of formulating this result is the following. Let tk be

independent random variables identically distributed with values 0

and 1, each with probability \. Then

(2) P(   £^ = rj)~(— j    iv-3/2

The referee has pointed out that (2) can be expected from the Linde-

berg theorem as follows. If A7'is large X!*=-iV *kk is approximately nor-

mally distributed with mean zero and variance A7'(A7+1)(2A?'+1)/12.

The right hand side of (2) is the probability density at the origin of
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1 See also [l].


