A COMBINATORIAL PROBLEM IN THE k-ADIC NUMBER SYSTEM

B. LINDSTRÖM AND H.-O. ZETTERSTRÖM

1. Introduction. Let N denote the set of all nonnegative integers. The elements in N are represented in the k-adic number system by strings of integers as $a_{1} a_{2} \cdots a_{p}, 0 \leqq a_{\nu} \leqq k-1$. Define a multivalued function on N by

$$
\Gamma\left(a_{1} a_{2} \cdots a_{p}\right)=\left\{a_{1} \cdots\left(a_{\nu}-1\right) \cdots a_{p} ; 1 \leqq \nu \leqq p, a_{\nu} \leqq 1\right\}
$$

and $\Gamma(0)=\varnothing$, the null set. Put $\alpha_{k}\left(a_{1} a_{2} \cdots a_{p}\right)=\sum a_{\nu}, \nu=1,2, \cdots, p$ and $\alpha_{k}(S)=\sum \alpha_{k}(n), n \in S$ if $S \subset N$.
S is said to be closed if $S \subset N$ and $\Gamma S \subset S . S_{n}=\{0,1, \cdots, n-1\}$ is closed. The problem is to determine the maximum of $\alpha_{k}(S)$ when S ranges over all closed S with $|S|=n$, i.e. with n elements. Our main result (Theorem 1) is that the maximum is $\alpha_{k}\left(S_{n}\right)$.

If we put $B_{k}(n)=\alpha_{k}\left(S_{n}\right)$, we get as a corollary

$$
\begin{aligned}
B_{k}\left(m_{1}+m_{2}+\cdots+m_{k}\right) \geqq \sum_{\nu=1}^{k} B_{k}\left(m_{\nu}\right) & +\sum_{\nu=2}^{k}(\nu-1) m_{\nu} \\
& m_{1} \geqq m_{2} \geqq \cdots \geqq m_{k} \geqq 0 .
\end{aligned}
$$

It is interesting that Theorem 1 can be derived from this inequality. We have no independent proof of it, except for $k=2$.

The asymptotic properties of the function $A_{k}(n)=B_{k}(n+1)$ were studied in [1] by R. Bellman and H. N. Shapiro. $A_{2}(n)$ appeared in connection with determinants in [2]. A result in that paper will be extended in our Theorem 2. We also note that there is some connection with the "detecting sets" studied in [3]. In fact, it was an attempt to extend the results in [3] which gave rise to the present problem.
2. Main results. In this section we shall derive the following theorem:

Theorem 1. If S is closed and $|S|=n$, then $\alpha_{k}(S) \leqq \alpha_{k}\left(S_{n}\right)$.
To simplify notations we shall omit the index " k " in the proofs.
Putting 0's in front of a string does not alter the integer represented by the string. Hence we can assume that all integers in S are represented by strings of the same length $p=p(S)$.

Received by the editors May 19, 1966.

Given $S \subset N$, we shall define a set $S^{c} \subset N$, called the compression of S. Let S_{ν} denote the set of all integers $n \in S$ for which $\alpha(n)=\nu$. Let S_{ν}^{c} denote the set of the $\left|S_{\nu}\right|$ smallest nonnegative integers n for which $\alpha(n)=\nu$. Then define S^{c} as the union of the sets S_{p}^{c}, $\nu=0,1,2, \cdots$. We note that

$$
\begin{align*}
\left|S^{c}\right| & =|S| \tag{2.1}\\
\alpha\left(S^{c}\right) & =\alpha(S) . \tag{2.2}
\end{align*}
$$

We shall prove a lemma:
Lemma 1. If $p(S)=2$ and S is closed, then S^{c} is closed.
Proof. It is instructive to imagine the integers $a_{1} a_{2} \in S$ as points with coordinates (a_{1}, a_{2}) in a 2-dimensional coordinate-system.

If $a_{1} \neq 0$ and $a_{2} \neq 0$ for every $a_{1} a_{2} \in S_{\nu}$ (or S_{ν}^{c}), then

$$
\begin{equation*}
\left|\Gamma S_{\nu}\right| \geqq\left|S_{\nu}\right|+1 \quad \text { and } \quad\left|\Gamma S_{\nu}^{c}\right|=\left|S_{\nu}^{c}\right|+1 \tag{2.3}
\end{equation*}
$$

This holds surely when $\nu \geqq k$.
If there is one and only one integer $a_{1} a_{2} \in S_{\nu}$ (or S_{ν}^{c}) for which a_{1} or $a_{2}=0$, then we find

$$
\begin{equation*}
\left|\Gamma S_{\nu}\right| \geqq\left|S_{\nu}\right| \quad \text { and } \quad\left|\Gamma S_{\nu}^{c}\right|=\left|S_{\nu}^{c}\right| . \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we get in both cases

$$
\begin{equation*}
\left|\Gamma S_{\nu}^{c}\right| \leqq\left|\Gamma S_{\nu}\right| . \tag{2.5}
\end{equation*}
$$

If there are two integers $a_{1} a_{2}$ for which a_{1} or $a_{2}=0$ then $S_{\nu}=S_{\nu}^{c}$ and (2.5) holds with equality.
S is closed if and only if $\Gamma S_{\nu} \subset S_{\nu-1}$ for $\nu=1,2, \cdots$. Then we find by (2.1) and (2.5)

$$
\left|\Gamma S_{\nu}^{c}\right| \leqq\left|S_{\nu-1}^{c}\right|, \quad \nu=1,2, \cdots
$$

From this inequality it follows $\Gamma S_{\nu}^{c} \subset S_{\nu-1}$ for $\nu=1,2, \cdots$. Hence S^{c} is closed and the lemma is proved.

We shall prove a second lemma
Lemma 2. Assume $p=p(S) \geqq 3$ for $S \subset N$, and that $b_{1} b_{2} \cdots b_{p} \in S$, $a_{i}=b_{i} \quad$ and $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{p}<b_{1} \cdots b_{i-1} b_{i+1} \cdots b_{p} \quad$ implies $a_{1} \cdots a_{p} \in S$ for $i=1,2, \cdots, p$. Then $b_{1} b_{2} \cdots b_{p} \in S$, $a_{1} a_{2} \cdots a_{p}$ $<b_{1} b_{2} \cdots b_{p}$ and $a_{1}+\cdots+a_{p} \leqq b_{1}+\cdots+b_{p}$ implies $a_{1} a_{2} \cdots$ $a_{p} \in S$.

Proof. We can assume $a_{\nu} \neq b_{\nu}, 1 \leqq \nu \leqq p$. Then $a_{1}<b_{1}$, since $a_{1} a_{2}$ $\cdots a_{p}<b_{1} b_{2} \cdots b_{p}$. If there is $s \neq 1$ such that $a_{s}<b_{s}$, we get

$$
b_{1} \cdots b_{s} \cdots b_{p}>b_{1} \cdots a_{s} \cdots a_{p}>a_{1} \cdots a_{s} \cdots a_{p}
$$

From these inequalities we find $a_{1} a_{2} \cdots a_{p} \in S$ if $b_{1} b_{2} \cdots b_{p} \in S$.
Next we assume $a_{\nu}>b_{\xi}$ for $\nu>1$. Since $a_{1}+\cdots+a_{p} \leqq b_{1}+\cdots$ $+b_{p}$, we get $b_{1}-a_{1} \geqq\left(a_{2}-b_{2}\right)+\cdots+\left(a_{p}-b_{p}\right) \geqq p-1 \geqq 2$. Hence

$$
b_{1} b_{2} \cdots b_{p}>\left(b_{1}-1\right) a_{2} b_{3} \cdots b_{p}>\left(b_{1}-2\right) a_{2} \cdots a_{p} \geqq a_{1} a_{2} \cdots a_{p} .
$$

Then from $b_{1} b_{2} \cdots b_{p} \in S$ we conclude $a_{1} a_{2} \cdots a_{p} \in S$.
Proof of Theorem 1. The proof is by induction over $p=p(S)$. If $p=1, S=S_{n}$ and the theorem is true. Next we assume $p=2$. The compressed set S^{c} is formed from S. If $S^{c} \neq S_{n}$ let $a_{1} a_{2}$ be the smallest nonnegative integer not in S^{c} and let $b_{1} b_{2}$ be the largest integer in S^{c}. Then we find $a_{1} a_{2}<b_{1} b_{2}, a_{1}<b_{1}, a_{2}>b_{2}$, for S^{c} is closed by Lemma 1 . We get even

$$
\begin{equation*}
a_{1}+a_{2}>b_{1}+b_{2} . \tag{2.6}
\end{equation*}
$$

For if $a_{1}+a_{2} \leqq b_{1}+b_{2}$, we can put $c=a_{1}+a_{2}-b_{2}$. Then $a_{1}<c \leqq b_{1}$ and $c b_{2} \in S^{c}$ for S^{c} is closed. Hence $a_{1} a_{2} \in S^{c}$, since $a_{1}+a_{2}=c+b_{2}$ and S^{c} is compressed. But $a_{1} a_{2} \notin S^{c}$, and (2.6) follows by the contradiction.

If $b_{1} b_{2}$ is deleted from S^{c} and $a_{1} a_{2}$ is adjoined to it, we get a new closed and compressed set T. We find by (2.1) and (2.2)

$$
\begin{equation*}
|T|=|S|, \quad \alpha(T)>\alpha(S) \tag{2.7}
\end{equation*}
$$

If $T \neq S_{n}$ we can find new integers $a_{1} a_{2}$ and $b_{1} b_{2}$. After a finite number of steps we get S_{n}, for the sum of all integers in the set is decreased at each step. By (2.7) the theorem holds for $p=2$.

Now we assume that T is a closed set with $p=p(T) \geqq 3$. For a_{1} fixed we shall consider the set $T\left(a_{1}\right)=\left\{a_{2} a_{3} \cdots a_{p} ; a_{1} a_{2} \cdots a_{p} \in T\right\}$. $T\left(a_{1}\right)$ is closed and $p\left(T\left(a_{1}\right)\right)=p-1$. By assumption the theorem holds for $T\left(a_{1}\right)$. Replace $T\left(a_{1}\right)$ by a set $S_{n}, n=\left|T\left(a_{1}\right)\right|$, restore the digit a_{1} and take union when $a_{1}=0,1, \cdots, k-1$. We get T_{1} with $\alpha\left(T_{1}\right)$ $\geqq \alpha(T)$. Note that $|T(\nu-1)| \geqq|T(\nu)|$, since T is closed. It follows that T_{1} is closed. Define $T_{1}\left(a_{2}\right)=\left\{a_{1} a_{3} \cdots a_{p} ; a_{1} a_{2} \cdots a_{p} \in T_{1}\right\}$. $T_{1}\left(a_{2}\right)$ is closed. Replace it by a set of type S_{n}, restore the digit a_{2} and take union when $a_{2}=0,1, \cdots, k-1 . T_{2}$ is closed and $\alpha\left(T_{2}\right) \geqq \alpha\left(T_{1}\right)$. Continue with the digits $a_{3}, \cdots, a_{p}, a_{1}, a_{2}, \cdots$. We get a sequence of closed sets: T, T_{1}, T_{2}, \cdots, for which

$$
\begin{equation*}
\alpha\left(T_{m+1}\right) \geqq \alpha\left(T_{m}\right), \quad\left|T_{m}\right|=|T| \tag{2.8}
\end{equation*}
$$

If $T_{m+1} \neq T_{m}$, then the sum of all integers in T_{m+1} is smaller than the sum of all integers in T_{m}. Hence there is an index q such that

$$
T_{q}=T_{q+1}=\cdots=T_{q+p} .
$$

Then we find that T_{q} meets the requirements on S in Lemma 2. If $T_{q} \neq S_{n}, n=|T|$, we can find a minimal $a_{1} a_{2} \cdots a_{p} \notin T_{q}$ and a maximal $b_{1} b_{2} \cdots b_{p} \in T_{q}$ such that $a_{1} \cdots a_{p}<b_{1} \cdots b_{p}$ and, by Lemma 2 .

$$
a_{1}+a_{2}+\cdots+a_{p}>b_{1}+b_{2}+\cdots+b_{p}
$$

We delete $b_{1} b_{2} \cdots b_{p}$ from T_{q} and adjoin $a_{1} a_{2} \cdots a_{p}$ to the set. Then we get a closed set U for which $\alpha(U)>\alpha\left(T_{q}\right) . U$ fulfills the requirements on S in Lemma 2. If $U \neq S_{n}$ we proceed to a new closed set with larger α-value. After a finite number of steps we get S_{n}. Hence $\alpha(T) \leqq \alpha\left(S_{n}\right)$ and the theorem follows by induction over p.

It is interesting to know that Lemma 1 is not valid for $p(S)>2$. This is seen by the example:

$$
\begin{aligned}
S & =\{000,001,010,100,002,011,020,110,012,021,120\} \\
S^{c} & =\{000,001,010,100,002,011,020,101,012,021,111\}
\end{aligned}
$$

S is closed, but S^{c} is not closed since $110 \in \Gamma S^{c}$ and $110 \notin S^{c}$.

Corollary.

$$
\begin{aligned}
& B_{k}\left(m_{1}+\cdots+m_{k}\right) \geqq \sum_{\nu=1}^{k} B_{k}\left(m_{v}\right)+\sum_{\nu=2}^{k}(\nu-1) m_{\nu} \\
& \\
& \quad m_{1} \geqq m_{2} \geqq \cdots \geqq m_{k} \geqq 0 . \\
& B_{k}(m n) \geqq m B_{k}(n)+n B_{k}(m), \quad m, n \geqq 1 .
\end{aligned}
$$

Proof. Determine p such that $m_{1} \leqq k^{p}$ and consider the set

$$
S=\bigcup_{\nu=1}^{k}\left\{a_{1} a_{2} \cdots a_{p}(\nu-1) ; a_{1} a_{2} \cdots a_{p} \in S_{m_{\nu}}\right\}
$$

S is closed and $|S|=m_{1}+\cdots+m_{k}$. The first inequality follows if we determine $\alpha(S)$ and apply Theorem 1.

The second inequality follows if we determine p and q such that $m \leqq k^{p}$ and $n \leqq k^{q}$ and consider the set

$$
T=\left\{a_{1} \cdots a_{p} b_{1} \cdots b_{q} ; a_{1} \cdots a_{p} \in S_{m}, b_{1} \cdots b_{q} \in S_{n}\right\} .
$$

T is closed, $|T|=m n, \alpha(T)=m \alpha\left(S_{n}\right)+n \alpha\left(S_{m}\right)$ and $\alpha(T) \leqq \alpha\left(S_{m n}\right)$.
3. Application to determinants. We assume here that $k=2$. There is a one-one mapping from nonnegative integers to sets of nonnegative integers:

$$
n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{t}} \rightarrow N=\left\{n_{1}, n_{2}, \cdots, n_{t}\right\}
$$

$$
\begin{equation*}
n_{1}>n_{2}>\cdots>n_{t} \geqq 0 \tag{3.1}
\end{equation*}
$$

$$
0 \rightarrow \varnothing
$$

The set-theoretic counterpart to closed set of integers is closed family of sets: \mathcal{F} is a closed family of sets if $N \in \mathscr{F}, M \subset N$ implies $M \in \mathscr{F}$.

Put $\alpha(N)=|N|$ and $\alpha(\mathscr{F})=\sum \alpha(N), N \in \mathscr{F}$. For functions f defined on a closed family \mathfrak{F}, we put

$$
\begin{equation*}
\hat{f}(N)=\sum_{M \subset N}(-1)^{|M| f(M), ~} \tag{3.2}
\end{equation*}
$$

where the sum is taken over all subsets to N. It is easy to verify $(\hat{f})^{\wedge}=f$. The proof of the following lemma can also be omitted (cf. [3, p. 481]).

Lemma 3. If f is defined on a closed family \mathfrak{F}, and $M, N \in \mathfrak{F}, M \not \subset N$,

$$
\sum_{S \subset M}(-1)^{|S|} f(S \cap N)=0
$$

We shall prove the theorem on determinants:
Theorem 2. Let $N_{1}, N_{2}, \cdots, N_{n}$ be an enumeration of all sets in a closed family for which $N_{i} \subset N_{j}$ only if $i \leqq j$. Then

$$
\left|\hat{f}\left(N_{i} \cap N_{j}\right)\right|_{i, j=1}^{n}=\prod_{i=1}^{n}(-1)^{\left|N_{i}\right|} f\left(N_{i}\right)
$$

Proof. Multiply the last row in the determinant by $(-1)^{\left|N_{n}\right|}$. If $N_{i} \subset N_{n}$ we multiply the i th row by $(-1)^{\left|N_{i}\right|}$ and add to the last row. In the last row of the new determinant are all entries 0 , except the last one which is $(\hat{f})^{\wedge}\left(N_{n}\right)=f\left(N_{n}\right)$. The value of the new determinant is $(-1)^{\left|N_{n}\right|}\left|\hat{f}\left(N_{i} \cap N_{j}\right)\right|_{i, j=1}^{n}=f\left(N_{n}\right)\left|\hat{f}\left(N_{i} \cap N_{j}\right)\right|_{i, j=1}^{n-1}$. If we note that $N_{1}=\varnothing$ and $\hat{f}(\varnothing)=f(\varnothing)$, the theorem follows by induction.

Example. Let $f(N)=2^{|N|}$. Then $\hat{f}(M)=(-1)^{|M|}$. It follows that $2^{\alpha(\mathcal{F})}$ equals a determinant with all entries +1 or -1 . If \mathcal{F} is the family which corresponds to the integers $0,1, \cdots, n$, we get Theorem 1 in [2].

References

1. R. Bellman and H. N. Shapiro, On a problem in additive number theory, Ann. of Math. (2) 49 (1948), 333-340.
2. G. F. Clements and B. Lindström, A sequence of (± 1)-determinants with large values, Proc. Amer. Math. Soc. 16 (1965), 548-550.
3. B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull. 8 (1965), 477-490.

University of Stockholm and

