
MEASURES THAT VANISH ON HALF SPACES1

BENJAMIN WEISS

I. Introduction. It is well known that if /£P1(Pn) (P„ denotes real

Euclidean re-space, and all functions are complex valued) has the

property that

(1) | f(x)dx = 0

for all half spaces 77, then/(x) =0 a.e. It is natural to conjecture that

if (1) holds for all 77£3C„, where 3C„ is the set of all half spaces of En

that exclude the unit sphere, then/(x) =0 a.e. in { |x| = 1}. Recently

S. Helgason has proven this assuming the a priori estimate f(x)

= 0(\x\~m) for all m>0 [5]. The simple example (due to D. J. New-

man) of f(x) = l/(xi+ix2)3 if |x| S:l and zero otherwise, which by

Cauchy's theorem satisfies (1) for all 77£3C2, shows that without

some assumption the conjecture is in fact false.

The purpose of this note is to characterize explicitly those/£P1(P„)

that satisfy (1) for all 77£3C„. The second section is devoted to a

Paley-Wiener theorem for Hankel transforms which is needed in the

proof of the main result. This is found in the final section together

with a few concluding remarks. Another version of a Paley-Wiener

theorem for Hankel transforms may be found in [4]. I am indebted

to the referee for this reference.

II. A P-W Theorem for Hankel transforms. The following theorem

of Plancherel and Polya [7] will be used.

(P) 7/ /£P>(£») and F(y)=JEJ(x) exp (-2iri(x, y))dx (or
/£P2(P„) and Fits Fourier transform) then f vanishes a.e. in {| x| ^ 1}

if and only if F is an entire function of exponential type 2ir in every

direction.

The Hankel transform of order v is defined by

f(x)J,(2Txy)(xyyiHx
0

where /„ is the Bessel function of order v and either/£P1(0, oo) or

/£P2(0, oo) and the integral is taken as l.i.m. [2, §42].
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Lemma 1. If F is given by (2) and v = n — \ (» = 1, 2, • • • ) iresp.

v = n) then F iresp. ylliFiy)) is an entire function of exponential type

2t if and only if f iresp. x_1/2/(x)) =/o+ £"-i C/Tj where /o(x) =0 for

x^ 1, r;(x) =x~' if x^ 1 and zero otherwise, and the c/s are constants.

Proof. The proof for v = n is just like the proof for v~n—1/2 and

so we confine our attention to this latter case. Furthermore, it is quite

straightforward to reduce the case of /£7,1 to /££2 and thus it

suffices to prove the lemma assuming that/£7,2.

(a) Suppose first that £ has a zero of order =ira at y>0. Then

Giy) = Fiy)/yn is also an entire function of exponential type 2tt and

setting g(x) =/(x)/x" we have

/,  QO

g(x)£(27rxy)x"+1'2(fx.
o

If g is considered as a radial function in £2(£2n+i) then except for a

factor of 2t the right hand side of (3) gives the Fourier transform of g

[l, §2.6]. Applying (P) we conclude that in this case/ itself vanishes

for x=£l.

(b) If r, is inserted for / in (2) the corresponding £y are given by

/l   OOJ,i2-Kx)xrW-dx + S,
0

where Sj is an entire function of exponential type 27r and vanishes at

zero to order ^ra. From (a) we see that the first term cannot vanish

and hence if a suitable linear combination of r, (j = l, 2, • • • , ra) is

subtracted from/we are reduced to the situation in (a), and this com-

pletes the proof in one direction. The other direction is immediate

since J, is entire of exponential type 27r, a fact which we used in our

assertion about Sj.

The following is an immediate consequence of the lemma and (P).

Corollary. If /££1(£„) is a radial function (/(x) =/(|x|)) and

/'  CO

fiw/y)Jk+ (n_!)/2(27rw)wn/2(fw,
0

then F is entire of exponential type 2w if and only i//=/o+£y-i CjTj

(ra^2, k>0).

III. The main theorem. Let

An= {feL\En): (1) holds for all 77£3C„}.

Observe that (i) A„ is a closed subspace of L1iE„), and (ii) An is rota-
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tion invariant in the sense that RESO(n) and fEA„ implies that

RfEAn(Rf(x)=f(Rx)). Denote by X)/*(|x|, x') (x'=x/|x|) the ex-
pansion of / in spherical harmonics, i.e., for fixed | x|,/* is a spherical

harmonic of degree k [l, §2.7]. The main reduction is accomplished

by

Lemma 2. 7//£P'(Pn) thenfEAn if and only if fkEA„ for all k.

Proof. Assume first that/£^4„, then/* may be expressed as

(4) M\x\,x')=  f      Rf(x)Zk(Ry', y')dR

where y' is a fixed unit vector and Zk is a zonal harmonic of degree k

[3, XI]. Since translation is continuous in the P1 norm, one verifies

easily that R—*Rf is a continuous map from SO(n)—^L1(En) and it

then follows from (i) and (ii) that/*£;!„.

Conversely, if fkEAn for all k then so are the appropriate Abel

means of yi/j,. Now the Abel means of a continuous function con-

verge [6]2 and thus by (i) fEA„.

Next we identify the Fourier transform of An in

Lemma 3. 7//£P1(P„) and F(y)=JEJ(x) exp ( — 2iri(y, x))dx then

fEAn if and only if for all tEEn with \t\ =1 we have that Ft is an entire

function of exponential type 2-k where Ft(z) = F(hz, i2z, • • • , tnz).

Proof. By (ii) it suffices to consider f = (l, 0, • • • , 0). Fubini's

theorem yields

Pt(z) =    I    f(x) exp (—2«2Xi)rfx

(5)

=    I    exp (— 2wizxi) <   I f(x)dx-i ■ ■ -dx„> dx\.
J El \J En-X )

Since P£^4„, { } as a function of xi vanishes for |xi | ^ 1 and thus P<

is entire of exponential type 27r. The converse follows from (5) and (P).

Theorem. 7//£P1(P„) and fk are given by (4) then fEAn if and

only if

/*( | x |, x') = fk,o( | x |, x') + X ck,j(x')rk+j( \x\)
y-i

* The theorem is given there for real valued continuous functions but may be

easily extended to continuous functions with values in a Banach space (here Z,1).
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where fk,o vanishes for |x| =1. ckj are harmonics of degree k ias is /t,o

for fixed \x\) and rm is defined in Lemma 1.

Proof. If Fk denotes the Fourier transform of fk then

/►  00

fkiw/ I y |, y')Jk+(n-»ni2irw)w,>ndw
o

[2, §2.7]. The theorem now follows from Lemma 2-3 and the corol-

lary of Lemma 1.

Helgason's result is obtained upon noticing that his a priori bound

on/carries over to fk and implies that the ckj are identically zero. The

results of this note carry over mutatis mutandis to measures, the de-

tails are omitted.
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