MEASURES THAT VANISH ON HALF SPACES¹

BENJAMIN WEISS

I. **Introduction.** It is well known that if $f \in L^1(E_n)$ (E_n denotes real Euclidean *n*-space, and all functions are complex valued) has the property that

$$\int_{H} f(x)dx = 0$$

for all half spaces H, then f(x) = 0 a.e. It is natural to conjecture that if (1) holds for all $H \in \mathcal{R}_n$, where \mathcal{R}_n is the set of all half spaces of E_n that exclude the unit sphere, then f(x) = 0 a.e. in $\{|x| = 1\}$. Recently S. Helgason has proven this assuming the a priori estimate $f(x) = O(|x|^{-m})$ for all m > 0 [5]. The simple example (due to D. J. Newman) of $f(x) = 1/(x_1 + ix_2)^3$ if $|x| \ge 1$ and zero otherwise, which by Cauchy's theorem satisfies (1) for all $H \in \mathcal{R}_2$, shows that without some assumption the conjecture is in fact false.

The purpose of this note is to characterize explicitly those $f \in L^1(E_n)$ that satisfy (1) for all $H \in \mathcal{H}_n$. The second section is devoted to a Paley-Wiener theorem for Hankel transforms which is needed in the proof of the main result. This is found in the final section together with a few concluding remarks. Another version of a Paley-Wiener theorem for Hankel transforms may be found in [4]. I am indebted to the referee for this reference.

- II. A P-W Theorem for Hankel transforms. The following theorem of Plancherel and Polya [7] will be used.
- (P) If $f \in L^1(E_n)$ and $F(y) = \int_{E_n} f(x) \exp(-2\pi i(x, y)) dx$ (or $f \in L^2(E_n)$ and F its Fourier transform) then f vanishes a.e. in $\{|x| \ge 1\}$ if and only if F is an entire function of exponential type 2π in every direction.

The Hankel transform of order ν is defined by

(2)
$$F(y) = \int_{0}^{\infty} f(x) J_{\nu}(2\pi xy) (xy)^{1/2} dx$$

where J_{ν} is the Bessel function of order ν and either $f \in L^{1}(0, \infty)$ or $f \in L^{2}(0, \infty)$ and the integral is taken as l.i.m. [2, §42].

Received by the editors, December 8, 1964.

¹ Presently at the IBM T. J. Watson Research Center, Yorktown Heights, New York.

LEMMA 1. If F is given by (2) and $\nu = n - \frac{1}{2}$ $(n = 1, 2, \cdots)$ (resp. $\nu = n$) then F (resp. $y^{1/2}F(y)$) is an entire function of exponential type 2π if and only if f (resp. $x^{-1/2}f(x)$) = $f_0 + \sum_{j=1}^n c_j r_j$ where $f_0(x) = 0$ for $x \ge 1$, $r_j(x) = x^{-j}$ if $x \ge 1$ and zero otherwise, and the c_j 's are constants.

PROOF. The proof for $\nu = n$ is just like the proof for $\nu = n - 1/2$ and so we confine our attention to this latter case. Furthermore, it is quite straightforward to reduce the case of $f \in L^1$ to $f \in L^2$ and thus it suffices to prove the lemma assuming that $f \in L^2$.

(a) Suppose first that F has a zero of order $\ge n$ at y>0. Then $G(y) = F(y)/y^n$ is also an entire function of exponential type 2π and setting $g(x) = f(x)/x^n$ we have

(3)
$$G(y) = y^{-n+1/2} \int_0^\infty g(x) J_{\nu}(2\pi xy) x^{n+1/2} dx.$$

If g is considered as a radial function in $L^2(E_{2n+1})$ then except for a factor of 2π the right hand side of (3) gives the Fourier transform of g [1, §2.6]. Applying (P) we conclude that in this case f itself vanishes for $x \ge 1$.

(b) If r_j is inserted for f in (2) the corresponding R_j are given by

$$R_{j} = y^{j-1} \int_{0}^{\infty} J_{\nu}(2\pi x) x^{-j+1/2} dx + S_{j}$$

where S_j is an entire function of exponential type 2π and vanishes at zero to order $\geq n$. From (a) we see that the first term cannot vanish and hence if a suitable linear combination of r_j $(j=1, 2, \dots, n)$ is subtracted from f we are reduced to the situation in (a), and this completes the proof in one direction. The other direction is immediate since J_r is entire of exponential type 2π , a fact which we used in our assertion about S_j .

The following is an immediate consequence of the lemma and (P).

COROLLARY. If $f \in L^1(E_n)$ is a radial function $(f(x) = \tilde{f}(|x|))$ and

$$\tilde{F}(y) = 2\pi i^k y^{-n} \int_0^\infty \tilde{f}(w/y) J_{k+(n-1)/2}(2\pi w) w^{n/2} dw,$$

then F is entire of exponential type 2π if and only if $f = f_0 + \sum_{j=1}^{k-1} c_j r_j$ $(n \ge 2, k > 0)$.

III. The main theorem. Let

$$A_n = \{ f \in L^1(E_n) : (1) \text{ holds for all } H \in \mathcal{H}_n \}.$$

Observe that (i) A_n is a closed subspace of $L^1(E_n)$, and (ii) A_n is rota-

tion invariant in the sense that $R \in SO(n)$ and $f \in A_n$ implies that $Rf \in A_n(Rf(x) = f(Rx))$. Denote by $\sum f_k(|x|, x')$ (x' = x/|x|) the expansion of f in spherical harmonics, i.e., for fixed |x|, f_k is a spherical harmonic of degree k [1, §2.7]. The main reduction is accomplished by

LEMMA 2. If $f \in L^1(E_n)$ then $f \in A_n$ if and only if $f_k \in A_n$ for all k.

PROOF. Assume first that $f \in A_n$, then f_k may be expressed as

(4)
$$f_k(|x|, x') = \int_{SO(n)} Rf(x)Z_k(Ry', y')dR$$

where y' is a fixed unit vector and Z_k is a zonal harmonic of degree k [3, XI]. Since translation is continuous in the L^1 norm, one verifies easily that $R \rightarrow Rf$ is a continuous map from $SO(n) \rightarrow L^1(E_n)$ and it then follows from (i) and (ii) that $f_k \in A_n$.

Conversely, if $f_k \in A_n$ for all k then so are the appropriate Abel means of $\sum f_k$. Now the Abel means of a continuous function converge $[\mathbf{6}]^2$ and thus by (i) $f \in A_n$.

Next we identify the Fourier transform of A_n in

LEMMA 3. If $f \in L^1(E_n)$ and $F(y) = \int_{E_n} f(x) \exp(-2\pi i (y, x)) dx$ then $f \in A_n$ if and only if for all $t \in E_n$ with |t| = 1 we have that F_t is an entire function of exponential type 2π where $F_t(z) = F(t_1 z, t_2 z, \dots, t_n z)$.

PROOF. By (ii) it suffices to consider $t = (1, 0, \dots, 0)$. Fubini's theorem yields

(5)
$$F_{i}(z) = \int_{E_{n}} f(x) \exp(-2\pi i z x_{1}) dx$$

$$= \int_{E_{1}} \exp(-2\pi i z x_{1}) \left\{ \int_{E_{n-1}} f(x) dx_{2} \cdot \cdot \cdot dx_{n} \right\} dx_{1}.$$

Since $F \in A_n$, $\{ \}$ as a function of x_1 vanishes for $|x_1| \ge 1$ and thus F_t is entire of exponential type 2π . The converse follows from (5) and (P).

THEOREM. If $f \in L^1(E_n)$ and f_k are given by (4) then $f \in A_n$ if and only if

$$f_k(|x|, x') = f_{k,0}(|x|, x') + \sum_{j=1}^{k-1} c_{k,j}(x') r_{k+j}(|x|)$$

² The theorem is given there for real valued continuous functions but may be easily extended to continuous functions with values in a Banach space (here L^1).

where $f_{k,0}$ vanishes for $|x| \ge 1$. $c_{k,j}$ are harmonics of degree k (as is $f_{k,0}$ for fixed |x|) and r_m is defined in Lemma 1.

PROOF. If F_k denotes the Fourier transform of f_k then

$$F_k(|y|, y') = 2\pi i^k |y|^{-n} \int_0^\infty f_k(w/|y|, y') J_{k+(n-1)/2}(2\pi w) w^{n/2} dw$$

[2, §2.7]. The theorem now follows from Lemma 2-3 and the corollary of Lemma 1.

Helgason's result is obtained upon noticing that his a priori bound on f carries over to f_k and implies that the $c_{k,j}$ are identically zero. The results of this note carry over *mutatis mutandis* to measures, the details are omitted.

Acknowledgment. I thank Professor E. M. Stein for his advice and helpful suggestions in the preparation of this note.

BIBLIOGRAPHY

- 1. S. Bochner, *Harmonic analysis and the theory of probability*, Univ. of California Press, Berkeley and Los Angeles, Calif., 1960.
- 2. ——, Lectures on Fourier integrals, Annals of Mathematics Studies No. 42, Princeton Univ. Press, Princeton, N. J., 1959.
- 3. A. Erdelyi, et al., Higher transcendental functions, Vol. 2, McGraw-Hill, New York, 1953.
- 4. J. L. Griffith, Hankel transforms of functions zero outside a finite interval, J. Proc. Roy. Soc. New South Wales 89 (1956), 109-115.
- 5. S. Helgason, The Randon transform on Euclidean spaces, compact two-point homogenous spaces and Grassman manifolds, Acta Math. 113 (1965), 153-180.
- 6. T. Kubota, Ueber die Konvex-geschlossenen Mannigfaltigkeiten in n-dimensionale Raume, Sci. Rep. Tôhoku Imperial Univ. 14 (1925), 85-99.
- 7. M. Plancherel and G. Polya, Fonctions entières et integral de Fourier multiples, Comment Math. Helv. 9 (1936-1937), 224-248.

PRINCETON UNIVERSITY