FINITE SUMS OF IRREDUCIBLE FUNCTIONALS
ON C*-ALGEBRAS!

HERBERT HALPERN

Let @ be a C*-algebra with identity I and let f be a positive
functional on @. If L(f) is the closed left ideal in @ defined by
{Ac@|f(4*4)=0}, we may define two norms on the left @-
module @—L(f): (1) ||@—L({)|li=f(4*4)"2, and (2) [|[4A~L)||.
=inf{||4 —K|| | KEL(f)}. The completion H(f) of @—L(f) under
the first norm is a Hilbert space. The inner product on H(f) is the
extension of (4 —L(f), B—L(f)) =f(B*A4) to H(f). The algebra @
can be represented as a C*-algebra on the Hilbert space H(f). The
operator $;(4) (AE Q) on H(f) is the extension of

®(A)(B — L(f)) = AB — L(f) to H(f).

The homomorphism ®; of @ into the algebra of bounded linear op-
erators on H(f) is called the canonical representation of @ on H(f)
induced by f. Under the second norm @ —L(f) is a Banach space
which we shall denote by X (f).

The two norms are related by the inequality

|4 = Ll S DA — LD,

for all 4 in @ Thus the map 4 —L(f)—A4 —L(f) of X(f) into H(f)
is continuous. If @ —L(f) is complete under the first norm (i.c. if
H(f)=@—L(f)), there is a bicontinuous isomorphism of H(f) onto
X (f). In this case we say H(f) is equivalent to X (f) and write H(f)
~X(f). If H(f) is equivalent of X (f), there is a >0 such that

|4 — Ll = 1D 4 = L= = B/(DVY[ 4 — L)1,

forall 4 in Q.

Kadison [2] showed that H(f)~X(f) for every irreducible func-
tional f on @. In the present paper we prove that H(f)~X(f) if and
only if f is the finite sum of irreducible functionals.

PROPOSITION 1. Let @ be a C*-algebra with identity I and let g, gs,
<+, ga be irreducible functionals on Q. If f= 2 {g, 1<j <n}, we
have X (f)~H(f).

Proor. We divide the proof into three parts.
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I. Suppose L(gx) does not contain the left ideal N;» L(g;) for each
k=1, 2, - - -, n. There is a B, in N;= L(g;) such that B,¢ L(g)
for each k=1, 2, - - -, n. We have By—L(g:) is not zero in H(g:).
Because ®,,(@) is irreducible on H(g:) there is an element R, in 4
such that I—L(g) =%, (R:)(Br—L(g))=RiBr—L(g). We have
RiBiENj L(g;). So there is no loss of generality in assuming Bz
=] (mod L(g;)) foreach k=1,2, - - - , n.

We now show @—L(f) is complete under the norm | -||;. Let
{4.—L(f)} be a Cauchy sequence in H(f). Then

limf((Am - Ap)*(Am - Ap)) = 0.

Therefore,
lim gj((Am — A)*(Am — A,)) =0  forj=1,2,-- -, n.
m,p

Since X (g;)~H(g;), there is a C; in @ such that
lEn gJ((Am - J‘)*(Am - J)) =0 (1 é] _S. ”)-

Let D= > ., C;B;. We claim D—L(f) is the limit of (4n—L(f)) in
H(f). Indeed, we have

i f(4n = D)*(4n = D)) = 3" lim g,((4n — D)*(4n — D))

j=1 m

(- pn) (- o)
= 3 lim gi((Am — C)*(4m — C3)) = 0,

j=1 m

since
*
g (Am - CkBk> (Am - CkBk)>
& &

= gi((4m — C;B))*(4m — C;Bj)).

This proves our claim. Hence, in case I we have X (f)~H(f).

II. Now let & be a positive functional on @ such that X (k) ~H(h).
Let g be a second positive functional with L(g) DL(k). We have
X(g+h)~H(g+h). Indeed, let 3>0 be a scalar with the property

n(A*4) < k() inf{|| 4 — K||?| K € L(h)} < BR(I)R(A*4),

for all 4 in @. Then we have for all 4 in @ that
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h(A*4) + g(4*4) = (D) + g(D)) inf{|| 4 — K||2| K € L(g + )}
= (h(I) + g(D) inf{||4 — K||*| K € L(h)}
< B(h(I) + g(I))h(A4*A4)
< B(H(I) + g(D) (h(A*A4) + g(4*4)),

because L(g+h)=L(g)N\L(h)=L(k). So X(g+h)~H(g+h).

III. We are now ready to prove Proposition 1 by induction on the
number 7 of irreducible functionals which appear in the sum expres-
sion for f.

Let n=2; consider the left ideals L(g1) and L(g). If L(g) DL(g)
or L(g:) DL(g1), we may apply part II to obtain X (g1 +g:)~H (g1+g:).
If, on the other hand, neither L(g;) DL(g) nor L(g,) DL(gy) is true,
we may apply part I to obtain X (g1+g:) ~H(g1+g:).

Let us assume that for any k<#n the sum & of & irreducible func-
tionals has the desired property X(h)~H(k). Let us show that
f=gi+g+ - - - +g. satisfies X(f)~H(f) if the functionals g; are
irreducible. We have either

(@) L(g)DNj= L(g;j) for k=1,2, - - -, nor

(b) there is a k, 1 <k =<n, with

L(g) D N L(gy)-
ek
In case (a) the proof follows from part I. The induction hypothesis
does not come into play. In case (b) we have g1+ « - - +gi1+gena
+ - - - 4g.=F has the property X(h)~H(h) by the induction hy-
pothesis. Also L(gr) DL(h) =N;= L(g;). By part II, X(f) =X (h+g:)
~H(h+g) =H(f). Q.E.D.
The converse to Proposition 1 is contained in Proposition 2. We

prove a preliminary lemma to clarify the meaning of equivalence
between H(f) and X (f).

LEMMA 1. Let @ be a C*-algebra with identity I and let f be a positive
functional on @ such that H(f)~X(f). The canonical representation
D=3, of @ on H(f) induced by f produces an algebra ®(®) whose com-
mutator ®(Q) on H(f) has the following property: if F' is a nonzero
projection in (@)’ then F' majorizes a minimal projection E' of ®(@)'.

Proor. We may assume that ®(@)’ does not consist of scalar multi-
ples of the identity. Let F’ be a nonzero projection in ®(@)’. There
is no loss of generality in assuming F's1. Let G'=I—F’ and let
L={AER|A—L(HEG (H(f))}. We have LDL(f) and L—L(f)
=G’ (H(f)) because H(f)~X (f). We prove L is a closed left ideal in Q.



1967] IRREDUCIBLE FUNCTIONALS ON C*ALGEBRAS 355

Indeed, L is obviously a linear manifold in @. If A €@, BEL, we have
AB — L(f) = ®(4)(B — L(f))
= ®(4)G'(B — L(f)) = G'(AB — L({)).

Thus, ABEL and L is a left ideal. If {A,.} is a sequence of elements
in L and if lim, 4,=4, we have

G4 — L) =G (u;nu,. - LO‘)))

=lim G'(4, — L(f)) = lim 4, — L(f) = 4 — L(§).

This shows that L is a closed set in @ and hence L is a closed left
ideal in @. Because I L, L is a proper ideal.

There is a maximal left ideal L; in @ such that Ly D L. Consider
the set Li—L(f) in H(f). This set is obviously a linear manifold in-
variant under ®(@). By the equivalence of H(f) and X (f) and by the
fact that L, is closed in @, we have that L, — L({) is a closed subspace
in H(f). Let Ef be the projection on H(f) corresponding to L — L(f).
Because L, — L(f) is invariant under (@), we have that Ej is a mem-
ber of ®(@)’.

We have that EjG’(4 — L(f)) = E{(B—L(f)) =B—L({f) =G'(4 — L(f))
where B&EL. Thus, Ei=G’ or equivalently E'=I—E;<F'. Since
I€ Ly, E| is not the identity operator I’ on H(f). It is therefore suffi-
cient to show that the nonzero projection E’ is a minimal projection
in ®(@)’. We suppose E’ is not minimal in ®(®)’ and obtain a con-
tradiction. If Ej, E; are nonzero orthogonal projections in ®(@)’
such that E'=E;+E;, we have I'>E,+E;>E,. The set L.
= {A eal A—L(f)e(Ei+E;)(H(f)) is a proper closed left ideal con-
taining L, but not equal to L,. This follows from the previous work.
Since L, is a maximal ideal, this is impossible. Therefore, E’ is indeed
a minimal projection. Q.E.D.

PROPOSITION 2. Let @ be a C*-algebra with identity I and let f be a
positive functional on Q such that H(f)~X(f). Then f is the sum of a
finite number of irreducible functionals.

Proor. Let ®=®; be the canonical representation of @ on H(f)
induced by f. Let { E,} be a maximal orthogonal set of minimal pro-
jections in ®(@)’. Since every nonzero projection in ®(®)’ majorizes
a minimal projection, we have that the least upper bound of the set
{E} is I'=®(I). The vector I—L(f) is cyclic under ®(®@) and,
therefore, I —L(f) is a separating vector for ®(@)’. This implies that
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{E,} is a sequence. We have that the functional f is the weak limit

of functionals f,, n=1, 2, - - -, where

fa= Z {ij'(I-L(j))“1>| 1=j5= ﬂ}
We shall prove thateach g;=wg;q—ryy» ®,j=1,2, - - -,isirreducible
and that for some integer N, 0=fy=fyj1= - - - =fy4 for all £>0.

We first prove that wg g—r¢)) - =g is irreducible whenever E’ is
a minimal projection in ®(@)’. Let L be the closed left ideal in @
given by L={A€@a|A—L(f)EUI—E')(H(f))}. Since E’ is a minimal
projection, the ideal L is a maximal left ideal in @. We have that
LCL(g) and so L=L(g). There is an irreducible functional g’ such
that L=L(g’). For all 4 in @ we have

g(4*4) = g(0)intf||4 — K[|*| K € L(p)}
< g int{[|4 — K[| K € L)} = ag(Dg'(4*4),

for some fixed scalar a>0. Since g(I)0, there is 3>0 such that
Bg'(4)=g(4) for all 4 in @. This shows that g is irreducible on Q.

To complete the proof we assume that the sequence {E,’,} is not
finite and arrive at a contradiction. Let

EJ/(I — L(f)) = E. — L() foreachn =1,2, - - -.
Here E,&@. We have
Ey — L(f) = Ed (Ex — L(f)) = Ed (2(E.) I — L(f))
= ®(En) [Ed (I — L())]
= ®(Ex)[E. — L()] = Ea — L(f).

Thus, for each #n we have E,—E2EL(f). Now let >0 be a scalar
such that for all AE@ we have

inf{||4 — K||| K € L(f)} = a'2f(4*4)12.
We have
| Ea = L)||2 < of (ErEn) = a(En — L(f), En — L(f)),  foralln.

Since

+ o >0 ==Ll =

2
1

2 EL(I— L)

E.— LD,

=YlEa-Lli=X
we have "
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lim || E» — L] = 0
and thus
lim || £, — L[  alim || &, — L@ = 0.

Because L(g.) DL(f), we have that
inf{|| En — K[| K € L(gn)} S[|Ea — L(I|s  for each n.
So lim,(inf{||E.—K|| | KEL(ga)})=0. But
g ((I — E)*(I — En)) = (2(I — En)(Ex — L(f)),

&(I — En)(En — L(f)) = (En — En — L(f), En — Ex — L(f))
=0.

So I —E,&L(g,). However, if
inf{||E. — K||| K € L(g.)} = inf{||I — K||| K € L&)} < 1,

we would be able to find an element K in L(g,) such that ||I—K|| <1.
This means that K has an inverse. This is impossible and so we have
obtained a contradiction to lim, inf{E,—K| KE&L(g.)} =0. Thus,
there are only a finite number of nonzero E,. Q.E.D.

Let @ be a C*-algebra on a Hilbert space H. A vector k& H will
be called strictly cyclic under G if and only if the set {Aho|AE@Q}
is equal to H. Then the preceding theorems may be rephrased to give
the theorem:

Let f be a positive functional on a C*-algebra @ and let ® be the
canonical representation of @ on H(f) induced by f. Then H(f) has a
strictly cyclic vector under ®(@) if and only if f is equal to a finite
sum of irreducible functionals on Q.

If f is a positive functional on @ such that H(f)~X(f), then f=g
+g+ - - - +g. where g1, g2, - - -, g» are irreducible functionals on
A. The canonical representations ®,; of 4 on H(g;) induced by g,
(1=j=n) are determined by f up to unitary equivalence.

PROPOSITION 3. Let g1, g, - - -, gn and g, 85, - - -, & be two sets of
irreducible functionals on A; if Y v, g;i= D™, g, there is for each g;
a scalar >0, and an index b (1 Sk <m) such that ag;(U*AU) =g{(4)
forall A in Q.

Proor. We let f=> {g|1<j<n}= > {g]|1<j<m}. Let >0
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be a scalar such that ||4 —L(f)||2<8f(4*4) for all 4 in @ We have
that L(g;) DL(f), and therefore

gi(4*4) = (D) inf{||4 — K||?| K € L(g))}
< gi(Dinf{||4 — K||?| K € L(N} = Bei(Df(4*4),

for all 4 in @. Let ® be the canonical representation of @ on H(f)
induced by f. There is an 4’ in ®(@)’ such that

gi(4) = (2(4)4'(1 — L(f)), AT — L()),

forall 4 in @. Let A’"(I—~L(f)) =B—L(f), where BE@. Then g;(4)
=f(B*AB) for all 4 in Q. Since g,0, there is an index k¢ (1<k=<m)
such that g}(B*B) 0. By a theorem of Glimm and Kadison [1] there
is a unitary operator U in @ and a scalar v >0 such that ygi(U*- U)
=g;(B*-B). Since g;(4*4)=f(B*A*AB)=vgi(U*A*AU), for all 4
in @, there is an >0 such that g;(4) =ag(U*4U), for all 4 EaG.
This completes the proof.
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