FINITE SUMS OF IRREDUCIBLE FUNCTIONALS ON C*-ALGEBRAS¹

HERBERT HALPERN

Let \mathfrak{A} be a C^* -algebra with identity I and let f be a positive functional on \mathfrak{A} . If L(f) is the closed left ideal in \mathfrak{A} defined by $\{A \in \mathfrak{A} | f(A^*A) = 0\}$, we may define two norms on the left \mathfrak{A} -module $\mathfrak{A} - L(f)$: (1) $\|\mathfrak{A} - L(f)\|_1 = f(A^*A)^{1/2}$, and (2) $\|A - L(f)\|_2 = \inf\{\|A - K\| \mid K \in L(f)\}$. The completion H(f) of $\mathfrak{A} - L(f)$ under the first norm is a Hilbert space. The inner product on H(f) is the extension of $(A - L(f), B - L(f)) = f(B^*A)$ to H(f). The algebra \mathfrak{A} can be represented as a C^* -algebra on the Hilbert space H(f). The operator $\Phi_f(A)$ $(A \in \mathfrak{A})$ on H(f) is the extension of

$$\Phi_f(A)(B-L(f)) = AB - L(f) \text{ to } H(f).$$

The homomorphism Φ_f of α into the algebra of bounded linear operators on H(f) is called the canonical representation of α on H(f) induced by f. Under the second norm $\alpha - L(f)$ is a Banach space which we shall denote by X(f).

The two norms are related by the inequality

$$||A - L(f)||_1 \le f(I)^{1/2} ||A - L(f)||_2,$$

for all A in α . Thus the map $A - L(f) \rightarrow A - L(f)$ of X(f) into H(f) is continuous. If $\alpha - L(f)$ is complete under the first norm (i.e. if $H(f) = \alpha - L(f)$), there is a bicontinuous isomorphism of H(f) onto X(f). In this case we say H(f) is equivalent to X(f) and write $H(f) \sim X(f)$. If H(f) is equivalent of X(f), there is a $\beta > 0$ such that

$$||A - L(f)||_1 \le f(I)^{1/2} ||A - L(f)||_2 \le \beta f(I)^{1/2} ||A - L(f)||_1$$

for all A in α .

Kadison [2] showed that $H(f) \sim X(f)$ for every irreducible functional f on \mathfrak{A} . In the present paper we prove that $H(f) \sim X(f)$ if and only if f is the finite sum of irreducible functionals.

PROPOSITION 1. Let \mathfrak{A} be a C^* -algebra with identity I and let g_1, g_2, \dots, g_n be irreducible functionals on \mathfrak{A} . If $f = \sum \{g_j, 1 \leq j \leq n\}$, we have $X(f) \sim H(f)$.

Proof. We divide the proof into three parts.

Received by the editors October 18, 1965.

¹ This paper constitutes part of the author's doctoral dissertation submitted to the Department of Mathematics of Harvard University.

I. Suppose $L(g_k)$ does not contain the left ideal $\bigcap_{j\neq k} L(g_j)$ for each $k=1,\ 2,\cdots,\ n$. There is a B_k in $\bigcap_{j\neq k} L(g_j)$ such that $B_k \oplus L(g_k)$ for each $k=1,\ 2,\cdots,\ n$. We have $B_k-L(g_k)$ is not zero in $H(g_k)$. Because $\Phi_{g_k}(\mathbf{a})$ is irreducible on $H(g_k)$ there is an element R_k in A such that $I-L(g_k)=\Phi_{g_k}(R_k)(B_k-L(g_k))=R_kB_k-L(g_k)$. We have $R_kB_k \in \bigcap_{j\neq k} L(g_j)$. So there is no loss of generality in assuming $B_k \equiv I \pmod{L(g_k)}$ for each $k=1,\ 2,\cdots,\ n$.

We now show $\alpha - L(f)$ is complete under the norm $\|\cdot\|_1$. Let $\{A_m - L(f)\}$ be a Cauchy sequence in H(f). Then

$$\lim_{m,p} f((A_m - A_p)^* (A_m - A_p)) = 0.$$

Therefore,

$$\lim_{m,p} g_j((A_m - A_p)^*(A_m - A_p)) = 0 \quad \text{for } j = 1, 2, \cdots, n.$$

Since $X(g_i) \sim H(g_i)$, there is a C_i in α such that

$$\lim_{m} g_{j}((A_{m} - C_{j})^{*}(A_{m} - C_{j})) = 0 \qquad (1 \leq j \leq n).$$

Let $D = \sum_{j=1}^{n} C_{j}B_{j}$. We claim D - L(f) is the limit of $(A_{m} - L(f))$ in H(f). Indeed, we have

$$\lim_{m} f((A_{m} - D)^{*}(A_{m} - D)) = \sum_{j=1}^{n} \lim_{m} g_{j}((A_{m} - D)^{*}(A_{m} - D))$$

$$= \sum_{j=1}^{n} \lim_{m} g_{j}\left(\left(A_{m} - \sum_{k} C_{k} B_{k}\right)^{*}\left(A_{m} - \sum_{k} C_{k} B_{k}\right)\right)$$

$$= \sum_{j=1}^{n} \lim_{m} g_{j}((A_{m} - C_{j})^{*}(A_{m} - C_{j})) = 0,$$

since

$$g_{j}\left(A_{m}-\sum_{k}C_{k}B_{k}\right)^{*}\left(A_{m}-\sum_{k}C_{k}B_{k}\right)$$

$$=g_{i}((A_{m}-C_{i}B_{i})^{*}(A_{m}-C_{i}B_{i})).$$

This proves our claim. Hence, in case I we have $X(f) \sim H(f)$.

II. Now let h be a positive functional on a such that $X(h) \sim H(h)$. Let g be a second positive functional with $L(g) \supset L(h)$. We have $X(g+h) \sim H(g+h)$. Indeed, let $\beta > 0$ be a scalar with the property

$$h(A^*A) \leq h(I) \inf\{||A - K||^2 | K \in L(h)\} \leq \beta h(I) h(A^*A),$$

for all A in α . Then we have for all A in α that

$$h(A^*A) + g(A^*A) \le (h(I) + g(I)) \inf\{||A - K||^2 | K \in L(g + h)\}$$

$$= (h(I) + g(I)) \inf\{||A - K||^2 | K \in L(h)\}$$

$$\le \beta(h(I) + g(I))h(A^*A)$$

$$\le \beta(h(I) + g(I))(h(A^*A) + g(A^*A)),$$

because $L(g+h) = L(g) \cap L(h) = L(h)$. So $X(g+h) \sim H(g+h)$.

III. We are now ready to prove Proposition 1 by induction on the number n of irreducible functionals which appear in the sum expression for f.

Let n=2; consider the left ideals $L(g_1)$ and $L(g_2)$. If $L(g_1) \supset L(g_2)$ or $L(g_2) \supset L(g_1)$, we may apply part II to obtain $X(g_1+g_2) \sim H(g_1+g_2)$. If, on the other hand, neither $L(g_1) \supset L(g_2)$ nor $L(g_2) \supset L(g_1)$ is true, we may apply part I to obtain $X(g_1+g_2) \sim H(g_1+g_2)$.

Let us assume that for any k < n the sum h of k irreducible functionals has the desired property $X(h) \sim H(h)$. Let us show that $f = g_1 + g_2 + \cdots + g_n$ satisfies $X(f) \sim H(f)$ if the functionals g_j are irreducible. We have either

- (a) $L(g_k) \supset \bigcap_{j \neq k} L(g_j)$ for $k = 1, 2, \dots, n$ or
- (b) there is a k, $1 \le k \le n$, with

$$L(g_k) \supset \bigcap_{j \neq k} L(g_j).$$

In case (a) the proof follows from part I. The induction hypothesis does not come into play. In case (b) we have $g_1 + \cdots + g_{k-1} + g_{k+1} + \cdots + g_n = h$ has the property $X(h) \sim H(h)$ by the induction hypothesis. Also $L(g_k) \supset L(h) = \bigcap_{j \neq k} L(g_j)$. By part II, $X(f) = X(h + g_k) \sim H(h + g_k) = H(f)$. Q.E.D.

The converse to Proposition 1 is contained in Proposition 2. We prove a preliminary lemma to clarify the meaning of equivalence between H(f) and X(f).

LEMMA 1. Let \mathfrak{A} be a C^* -algebra with identity I and let f be a positive functional on \mathfrak{A} such that $H(f) \sim X(f)$. The canonical representation $\Phi = \Phi_f$ of \mathfrak{A} on H(f) induced by f produces an algebra $\Phi(\mathfrak{A})$ whose commutator $\Phi(\mathfrak{A})'$ on H(f) has the following property: if F' is a nonzero projection in $\Phi(\mathfrak{A})'$ then F' majorizes a minimal projection E' of $\Phi(\mathfrak{A})'$.

PROOF. We may assume that $\Phi(\alpha)'$ does not consist of scalar multiples of the identity. Let F' be a nonzero projection in $\Phi(\alpha)'$. There is no loss of generality in assuming $F' \neq I$. Let G' = I - F' and let $L = \{A \in \alpha \mid A - L(f) \in G'(H(f))\}$. We have $L \supset L(f)$ and L - L(f) = G'(H(f)) because $H(f) \sim X(f)$. We prove L is a closed left ideal in α .

Indeed, L is obviously a linear manifold in α . If $A \in \alpha$, $B \in L$, we have

$$AB - L(f) = \Phi(A)(B - L(f))$$

= $\Phi(A)G'(B - L(f)) = G'(AB - L(f)).$

Thus, $AB \subset L$ and L is a left ideal. If $\{A_n\}$ is a sequence of elements in L and if $\lim_n A_n = A$, we have

$$G'(A - L(f)) = G'\left(\lim_{n} (A_n - L(f))\right)$$

$$= \lim_{n} G'(A_n - L(f)) = \lim_{n} A_n - L(f) = A - L(f).$$

This shows that L is a closed set in α and hence L is a closed left ideal in α . Because $I \in L$, L is a proper ideal.

There is a maximal left ideal L_1 in α such that $L_1 \supset L$. Consider the set $L_1 - L(f)$ in H(f). This set is obviously a linear manifold invariant under $\Phi(\alpha)$. By the equivalence of H(f) and X(f) and by the fact that L_1 is closed in α , we have that $L_1 - L(f)$ is a closed subspace in H(f). Let E'_1 be the projection on H(f) corresponding to $L_1 - L(f)$. Because $L_1 - L(f)$ is invariant under $\Phi(\alpha)$, we have that E'_1 is a member of $\Phi(\alpha)'$.

We have that $E_1'G'(A-L(f))=E_1'(B-L(f))=B-L(f)=G'(A-L(f))$ where $B\in L$. Thus, $E_1'\geqq G'$ or equivalently $E'=I-E_1'\leqq F'$. Since $I\notin L_1$, E_1' is not the identity operator I' on H(f). It is therefore sufficient to show that the nonzero projection E' is a minimal projection in $\Phi(\mathfrak{A})'$. We suppose E' is not minimal in $\Phi(\mathfrak{A})'$ and obtain a contradiction. If E_2' , E_3' are nonzero orthogonal projections in $\Phi(\mathfrak{A})'$ such that $E'=E_2'+E_3'$, we have $I'>E_2'+E_1'>E_1'$. The set $L_2=\{A\in\mathfrak{A}\mid A-L(f)\in (E_1'+E_2')(H(f)) \text{ is a proper closed left ideal containing }L_1\text{ but not equal to }L_1$. This follows from the previous work. Since L_1 is a maximal ideal, this is impossible. Therefore, E' is indeed a minimal projection. Q.E.D.

PROPOSITION 2. Let α be a C*-algebra with identity I and let f be a positive functional on α such that $H(f) \sim X(f)$. Then f is the sum of a finite number of irreducible functionals.

PROOF. Let $\Phi = \Phi_f$ be the canonical representation of $\mathfrak A$ on H(f) induced by f. Let $\{E'_n\}$ be a maximal orthogonal set of minimal projections in $\Phi(\mathfrak A)'$. Since every nonzero projection in $\Phi(\mathfrak A)'$ majorizes a minimal projection, we have that the least upper bound of the set $\{E'_n\}$ is $I' = \Phi(I)$. The vector I - L(f) is cyclic under $\Phi(\mathfrak A)$ and, therefore, I - L(f) is a separating vector for $\Phi(\mathfrak A)'$. This implies that

 $\{E'_n\}$ is a sequence. We have that the functional f is the weak limit of functionals f_n , $n=1, 2, \cdots$, where

$$f_n = \sum \left\{ w_{E_j'(I-L(f))} \cdot \Phi \middle| 1 \leq j \leq n \right\}.$$

We shall prove that each $g_j = w_{E_j'(I-L(f))} \cdot \Phi$, $j = 1, 2, \dots$, is irreducible and that for some integer N, $0 = f_N = f_{N+1} = \dots = f_{N+k}$ for all k > 0.

We first prove that $w_{E'(I-L(f))} \cdot \Phi = g$ is irreducible whenever E' is a minimal projection in $\Phi(\mathfrak{A})'$. Let L be the closed left ideal in \mathfrak{A} given by $L = \{A \in \mathfrak{A} \mid A - L(f) \in (I - E')(H(f))\}$. Since E' is a minimal projection, the ideal L is a maximal left ideal in \mathfrak{A} . We have that $L \subset L(g)$ and so L = L(g). There is an irreducible functional g' such that L = L(g'). For all A in \mathfrak{A} we have

$$g(A^*A) \le g(I) \inf\{||A - K||^2 | K \in L(g)\}$$

$$\le g(I) \inf\{||A - K||^2 | K \in L(g')\} \le \alpha g(I)g'(A^*A),$$

for some fixed scalar $\alpha > 0$. Since $g(I) \neq 0$, there is $\beta > 0$ such that $\beta g'(A) = g(A)$ for all A in α . This shows that g is irreducible on α .

To complete the proof we assume that the sequence $\{E'_n\}$ is not finite and arrive at a contradiction. Let

$$E'_n(I-L(f)) = E_n - L(f)$$
 for each $n = 1, 2, \cdots$

Here $E_n \in \mathfrak{a}$. We have

$$E_{n} - L(f) = E'_{n}(E_{n} - L(f)) = E'_{n}(\Phi(E_{n})(I - L(f)))$$

$$= \Phi(E_{n})[E'_{n}(I - L(f))]$$

$$= \Phi(E_{n})[E_{n} - L(f)] = E'_{n} - L(f).$$

Thus, for each n we have $E_n - E_n^2 \subset L(f)$. Now let $\alpha > 0$ be a scalar such that for all $A \subset \alpha$ we have

$$\inf\{||A - K|| \mid K \in L(f)\} \le \alpha^{1/2} f(A^*A)^{1/2}.$$

We have

$$||E_n - L(f)||_2^2 \le \alpha f(E_n^* E_n) = \alpha(E_n - L(f), E_n - L(f)), \quad \text{for all } n.$$

Since

$$+ \infty > f(I) = \|I - L(f)\|_{1}^{2} = \|\sum_{n} E'_{n}(I - L(f))\|_{1}^{2}$$
$$= \sum_{n} \|E'_{n}(I - L(f))\|_{1}^{2} = \sum_{n} \|E_{n} - L(f)\|_{1}^{2},$$

we have

$$\lim ||E_n - L(f)||_1^2 = 0$$

and thus

$$\lim_{n} ||E_{n} - L(f)||_{2}^{2} \leq \alpha \lim_{n} ||E_{n} - L(f)||_{1}^{2} = 0.$$

Because $L(g_n) \supset L(f)$, we have that

$$\inf\{||E_n - K|| \mid K \in L(g_n)\} \le ||E_n - L(f)||_2$$
 for each n.

So
$$\lim_{n} (\inf \{ ||E_n - K|| | K \in L(g_n) \}) = 0$$
. But

$$g_n((I - E_n)^*(I - E_n)) = (\Phi(I - E_n)(E_n - L(f)),$$

$$\Phi(I - E_n)(E_n - L(f)) = (E_n - E_n^2 - L(f), E_n - E_n^2 - L(f))$$

$$= 0.$$

So $I-E_n \in L(g_n)$. However, if

$$\inf\{||E_n - K|| \mid K \in L(g_n)\} = \inf\{||I - K|| \mid K \in L(g_n)\} < 1,$$

we would be able to find an element K in $L(g_n)$ such that ||I-K|| < 1. This means that K has an inverse. This is impossible and so we have obtained a contradiction to $\lim_n \inf \{E_n - K | K \in L(g_n)\} = 0$. Thus, there are only a finite number of nonzero E'_n .

Q.E.D.

Let α be a C^* -algebra on a Hilbert space H. A vector $h_0 \in H$ will be called *strictly cyclic* under α if and only if the set $\{Ah_0 | A \in \alpha\}$ is equal to H. Then the preceding theorems may be rephrased to give the theorem:

Let f be a positive functional on a C^* -algebra \mathfrak{A} and let Φ be the canonical representation of \mathfrak{A} on H(f) induced by f. Then H(f) has a strictly cyclic vector under $\Phi(\mathfrak{A})$ if and only if f is equal to a finite sum of irreducible functionals on \mathfrak{A} .

If f is a positive functional on a such that $H(f) \sim X(f)$, then $f = g_1 + g_2 + \cdots + g_n$ where g_1, g_2, \cdots, g_n are irreducible functionals on A. The canonical representations Φ_{o_j} of A on $H(g_j)$ induced by g_j $(1 \le j \le n)$ are determined by f up to unitary equivalence.

PROPOSITION 3. Let g_1, g_2, \dots, g_n and g'_1, g'_2, \dots, g'_m be two sets of irreducible functionals on A; if $\sum_{j=1}^n g_j = \sum_{j=1}^m g'_j$, there is for each g_j a scalar $\alpha > 0$, and an index k $(1 \le k \le m)$ such that $\alpha g_j(U^*AU) = g'_k(A)$ for all A in α .

PROOF. We let
$$f = \sum \{g_j | 1 \le j \le n\} = \sum \{g_j | 1 \le j \le m\}$$
. Let $\beta > 0$

be a scalar such that $||A - L(f)||_2^2 \le \beta f(A * A)$ for all A in α . We have that $L(g_j) \supset L(f)$, and therefore

$$g_{j}(A^{*}A) \leq g_{j}(I) \inf\{||A - K||^{2} | K \in L(g_{j})\}$$

$$\leq g_{j}(I) \inf\{||A - K||^{2} | K \in L(f)\} \leq \beta g_{j}(I) f(A^{*}A),$$

for all A in α . Let Φ be the canonical representation of α on H(f) induced by f. There is an A' in $\Phi(\alpha)'$ such that

$$g_j(A) = (\Phi(A)A'(1 - L(f)), A'(I - L(f)),$$

for all A in α . Let A'(I-L(f))=B-L(f), where $B\in\alpha$. Then $g_j(A)=f(B^*AB)$ for all A in α . Since $g_j\neq 0$, there is an index k $(1\leq k\leq m)$ such that $g_k'(B^*B)\neq 0$. By a theorem of Glimm and Kadison [1] there is a unitary operator U in α and a scalar $\gamma>0$ such that $\gamma g_k'(U^*\cdot U)=g_k'(B^*\cdot B)$. Since $g_j(A^*A)=f(B^*A^*AB)\geq \gamma g_k'(U^*A^*AU)$, for all A in α , there is an $\alpha>0$ such that $g_j(A)=\alpha g_k'(U^*AU)$, for all $A\in\alpha$. This completes the proof.

BIBLIOGRAPHY

- 1. R. Kadison and J. Glimm, Unitary operators for irreducible representations, Pacific J. Math. 10 (1960), 547-556.
- 2. R. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276.
- 3. C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.

Illinois Institute of Technology