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elegant and polished character, for which there is no other outlet.

A NONUNIQUENESS RESULT FOR AN EULER-POISSON-
DARBOUX (EPD) PROBLEM

B. A. FUSARO1

This note is concerned with a Cauchy problem for a generaliza-

tion of the EPD equation Au = kt~1ut+utt. The problem in m + 1

space-time variables is

(1) A2m — b(t; k)ut — u,t = F(x, t)        (t > 0, k real),

(2) u(x, 0)=/(x),        ut(x, 0) = 0;

here b(t; k) = kt~l + B(t), and A2 is a Laplace-Beltrami space-operator.

It can be assumed that A2 and/ are of class C", and that B and P are

continuous. Solutions are sought, e.g., that are twice-differentiable

above the initial plane t = Q, and continuously differenLiable on the

initial plane.

There are several uniqueness results for similar problems, espe-

cially for positive index, k>0. J. Lions [l] has a uniqueness result for

solutions even in t for all k other than the "exceptional" values

— 1, —3, — 5, • • • , under C conditions. A nonuniqueness result

for negative index follows.

The above Cauchy problem does not have a unique solution for nega-

tive index value k<0. This result follows upon noting that the x-free

function

(3) w = w(t) =  j    (exp f B(o-)do-JT-kdT        (k < 0)

is a solution of the completely homogeneous problem

w" + b(t; k)w' = 0,       w(0) = 0,       w'(Q) = 0.

This nonuniqueness property persists even if problem (1, 2) is as-

sumed to be analytic.

Choosing P = 0 reduces (3) to w = t1~k, a function first used by

A. Weinstein [2] to establish a nonuniqueness result for his EPD

equation Au = kt~lut-\-Uu, with initial conditions (2) and for negative

index k.
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LOCAL FLATNESS OF COMBINATORIAL
MANIFOLDS IN CODIMENSION ONE1

WILLIAM A. LaBACH

We derive here a fundamental theorem of Brown [l] from a the-

orem of Cairns [2].

Theorem. If K is a combinatorial n-manifold without boundary

rectilinearly embedded in Rn+l then K is locally flat in Pn+1.

Proof. Let x be any point of K and let sbea vertex of K contain-

ing x in the interior of its star, St(», K). Without loss of generality,

we may assume that v is the origin in Rn+l. The radial projection T

of the link, Lk(*/, K), of v in K on S" is a combinatorial (n — l)-sphere

in Sn whose cells are geodesic simplexes on 5". By the main theorem

of [2], there is a homeomorphism h of 5" (onto itself) taking

r(Lk(t), K)) onto S"-1. Let h* denote the radial extension of h to a

homeomorphism of P"+1. Then h* maps St(fl, K) into P\ Thus K is

locally flat in Pn+1.
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