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Recent work on pushdown store automata has focused attention

on various sets of pushdown store tapes [8]. Certain sets of tapes

associated with pushdown store automata can be proved regular. As

a consequence we obtain a new proof of a theorem due to Biichi:2

that regular canonical systems (i.e., productions of the form aQ—>fiQ)

produce regular sets [2].3

In this paper we shall use a theorem of Bar-Hillel, Pedes and

Shamir [l] to show that the set of tapes left on the pushdown store

by a regular set is regular,4 and derive Btichi's theorem from that

result.

First we shall need some definitions. We assume familiarity with

the definition of production systems.6

Definition. A finite state grammar is a quadruple G= (I, T, X, P),

where / and P are finite sets, If\T = 0, X(£I and P is a finite set of

semi-Thue productions of the forms

QiZQ2-^QiaYQ2,       QiZQ2-+QiaQ2,       Z, Y G /, a G TV {\\.

A  set L  is  regular iff L= (wGP*|X=>*w\   for some  finite state

grammar G.6

We must now define pushdown store automata and their actions.
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1 The research reported in this paper was sponsored in part by the Air Force Cam-

bridge Research Laboratories, Office of Aerospace Research, under Contract AF

19(682)-5166, CRL-Algorithmic Languages Program.

2 Biichi's proof is more elementary; the proof in this paper is shorter and less com-

plicated because it follows from other results.

3 This theorem is not to be confused with Chomsky's observation that finite state

grammars generate regular sets [3], or the theorem of Evey [6] and Matthews [13]

that left generations of semi-Thue systems produce context-free sets; the systems in-

volved are different in form.

4 This result is part of the folklore on the subject, but, as far as this author is

aware, has never appeared in print. Analogous theorems are proven in [8] and [9] by

different methods; the present approach could have been used in [8].

6 See [5], [14], [15] and [l7]for further discussion of productions and combinato-

rial systems.

Notation. If QiaQi—>0i/3Q2 is a semi-Thue production, we write wiawr=$wifiwi

for any strings w\, wi. =>* denotes the transitive closure of =>.

8 For any set R, the closure of R, denoted by R*, is the free semigroup (with

identity X) generated by R.

Justification for this definition appears in [l] and [3]; different but equivalent

characterizations of regular sets appear in [2], [12] and [lfi].
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Definition. A pushdown store automaton (pda) is a septuple M

= iK, 2, T, b, g0, $, F), where (1) K, 2, T are finite sets, $Gr, FQK,

(2) 5 is a function from AJe(2W {X} )xT into the finite subsets of KxT*.

(q, ay, Aw') hj, (g', y, ww') if (g', w) E 8(q, a, A),

w' ET*, aesUJlij,

AET and yG2*. hi is the transitive closure of hu-7 Null (M)

= {w\aqEF, (g0, w, $) h^(g, X, X)}.
Intuitively, Null (M) is the set of all input tapes that empty the

pushdown store and cause the pda to enter a final state at the end.

Definition, i is context-free iff i = Null(M) for some pda M.B

In order to state the necessary results clearly, we give the following

definitions.

Definition, i is a w«/-language iff for some finite vocabulary T and

some cET, LQT*cT*. If i is a wcu-language, let

h(u) = {v\ ucv E L), gL(v) = {u\ ucv E L),

U(L) = {u\fL(u) * 0),     V(L) = [v\ gL(v) * 0\.

We can now state the relevant theorem of Bar-Hillel, Perles and

Shamir  [l] as:

Theorem 1. Let L be a context-free ucv-language. If for every u,

fh(u) is finite, then V(L) is regular. If for every v, gi.(v) is finite, then

U(L) is regular.

We now focus attention on the tapes left on the pushdown store

when reading any member of a given regular set and ending in a given

state.

Theorem 2. Let M: (K, 2, T, S, qa, $, F) be a pda. Let qEK, and

let RClH* be regular. Then

Vq={u\ 3wE R, (qo,w,$)r-M(q,\u)}

is regular.

Proof. Let c be a new symbol. First we shall see that

7 The notation used here is the reverse of that employed by the author elsewhere

[8]; here we read pushdown store tapes from left to right for convenience; if we con-

sidered productions Qa—>Q/S, the other notation would be preferable.

8 Context-free languages are usually denned by special semi-Thue systems; see

[l] or [3]. The equivalence of the present definition to the standard one can be

easily obtained as a corollary to results in [4] and [6]; a particularly clean proof

appears in [7].
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Li = {wcu I (go, w, $) \-M (q, X, «)}

is context-free. We modify the pda M to produce a pda Mi, which

imitates M unless and until it sees c in state g. Then it empties the

pushdown store, checking against the input tape. Clearly Mi can be

constructed, Null (Mi)=Li and Vg= V^i^RcY*). H fLliw) is finite

for all wER, we are done. But the X-rules may allow M infinitely

many actions on one input tape and hence one input might leave

infinitely many distinct tapes on the pushdown store. So, instead of

X-rules, we use a dummy symbol (or "clock pulse") JtJSUrUjcj.

Mi is modified to produce a pda M2 which behaves like Mi, except

that where, for 5 in K and A in V,

5(5, X, A) = Siis, X, A) ^ 0

we have in M2:

82is, X, A) = 0    and    52(s, d, A) = 5(s, X, A).

Let i2 = Null(Af2). Let i/-(a)=a for a^d and ^(d)=X. Let L3 = L2

(^(^(RcT*)). Clearly, Vq=V(L)„ and for each w, fL,(w) is finite,

is is context-free. The inverse of a homomorphism preserves regu-

larity [10], and the intersection of a context-free language and a

regular language is context-free [l]. Hence i3 is context-free and,

by Theorem 1, Vq = F(i3) is regular.

Now we must define regular canonical systems to derive the de-

sired results.

Definition. A regular canonical system is a quintuple R

= (/, T, U, V,P), where

(1) I and T are finite sets and IC\T = 0,

(2) U, VQilUT)*, and
(3) P is a finite set of regular productions of the form

aQ^(3Q        a, /S G (/ U T)*.

Notation. When treating a regular canonical system R we shall

write i?-deductions as u=>pv or u=>*v.*

Definition. Let R= (/, T, U, V, P) be a regular canonical system.

The set r(<7, P, V) of words produced by i? is

t(<7, P,  F) = {xG T*\ 3uEU, vEV, u=>*pvx}.

The set (8(77, P, F) of words accepted by i? is

» If «Q-+/30 is in P, then au=$v0u for any « G(7Wr)*. If «>i=*,Wi+i for 1 gt <n,
then a>i=>*itv
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P(U, P, V) = |iG T*\ 3u G U, v G V, ux=>l v\.

t(U, P, {X}) is the set of theorems of R.

Biichi showed that if U is finite, then t(U, P, {X}) is regular and,

moreover, all regular sets can be obtained in this fashion [2]. We

shall see that, if U, V are any regular sets over T-JT, then t(U, P, V)

and fi(U, P, V) are regular.

Notation. If a is an individual symbol, a = a; X = X. If x = Ai ■ ■ ■ Am

is a string, then x = Am ■ ■ • Ai. If 5 is a set, S= {x\x£ES}. S is

regular iff S is regular [16].

Theorem 3. Let R = (/, T, U, V, P) be a regular canonical system.

Let U and V be regular sets (finite or infinite). Then r(U, P, V) is

regular.

Proof. We now construct a special pda M that accepts members

of (7WP)* as input, places them (reversed) on the pushdown store,

and proceeds to imitate the deductions of R.

Let n = Max {l(a) | 3/3, aQ^PQEP} •10 Let M= (K, S, T, 8, q0, $, F).
We define:

K= \q(w)\zv(E.(IUT)*, 0^l(w)^n}U{q0, <?/}, each q(w) a new

symbol,

r = /UPU{$}, $ a symbol not in /UP,

2 = IVJT,

S is defined in the following parts:

(I) For all A^IVJT, B^I\JT\J{%], we set

S(qo,A,B)  =  {(q0,AB),(q(X),AB)\.

5(<Zo,X,$)={(<z(X),$)}.

(II) For each ^G/UPand w^(I\JT)*, with 0^l(w)<n,

(q(wA), X) G 8(q(w), X, A).

(III) For each aQ->pQ in P and each 4G/UrU{$[,

(q(X), PA) G 8(q(a), X, A).

(IV) For each ^G/UPU{$},

The parts of the pda work as follows:

101(a) is the length of the string a, l(\) = 0.
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(I)   (qo, u, $) hi (g(X), X, m$) for u (= (I VJ T)*.

(II) (q(X), X, wy) \-*M (q(w), X, y) iff 0 ^ Z(w) g w.

(III) (0(a), X, y) \-M (q(X), X, py) iff aQ -»£0 is in P.

(IV) (g(X), X, w$) r-M (0/, X, w$).

Putting this together we get

(go, #, $) r-M (g(X), X, M$) \-m (q(X), X, v$) \-M (g/, X, u$)        iff u =>p v.

Since U is regular, so is U. By Theorem 2, the set

F9/ =   {?> I   3«G,  ^(?o, «, $)  r-Af (?/, X, t))

is regular. This yields

Vif = \x\ 3m G U, u =*p x).

Since the quotient of regular sets is regular [ll], then

t(U, P, V) = {x\ 3v G V, to$ G Vy} f\ T*

is regular.

Corollary. Let R = (/, T, U, V, P) be a regular canonical system.

Let U and V be regular sets. Then /3(f/, P, V) is regular.

Proof. Let P be the set of regular productions defined as follows:

P = {/30 -* aQ I aQ -^ pQ G P}

and let R be the regular canonical system, R= (I, T, U, V, P). Then

clearly p(U, P, V)=r(V, P, U), so that 0(U, P, V) is regular by

Theorem  3.

Remarks. Obviously we have the same results for reverse regular

canonical systems whose productions have the form Qa—>@/3.

Instead of appealing to the quotient theorem in the proof of The-

orem 3, we could have had M delete some member of V from the

pushdown store before going to qj; from this we could have easily ob-

tained another proof of the quotient theorem for regular sets.
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