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1. Let 5 be a bounded set of points in the Euclidean plane with a

unit distance defined. If a rectangular coordinate system is imposed,

a certain number of points of 5 are lattice points, i.e. points with

integer coordinates. Let m(S) be the minimum number of lattice

points of 5 under all possible choices of the axis system, and M(S)

the maximum number. For example if 5 is a closed disk of diameter

one, then m(S)=Q and M(S) =2. The definitions of m(S) and M(S)

could be given in terms of a fixed rectangular coordinate system, with

the set 5 being freely rotated and translated in the plane. It will be

convenient in the proofs to use sometimes one and sometimes the

other of these two formulations.

Although the definitions and theorems of this paper are given for

2-dimensional Euclidean space, the generalization to higher dimen-

sions involves no difficulties whatsoever.

It is apparent that m(S)^M(S) for any set S. R. M. Robinson

suggested that the strict inequality holds for a nonempty bounded

closed set, which is a more general result than we had formulated.

Theorem 1. If Sis a nonempty bounded closed set then m(S) < M(S).

Proof. Select any points A and B with AES and B(£S. On the

straight line segment ^4P let P be the point of 5 that is closest to B;

P exists because 5 is closed. Now impose a coordinate system with

origin at P. With this coordinate system suppose that S has r lattice

points, so that m(S) ^r^M(S). Let Qi, Q2, ■ ■ ■ , Qk be all the lattice

points in the plane which are not members of 5 and each of which is

within unit distance of some point of S; this is a finite set of points

because S1 is bounded. For each of these points Qi there is a positive

number 8,- so that the disk of radius 5,- with center at Qi contains no

point of S. Define 5 as min(5i, 52, • ■ • , ok).

With the set 5 held fixed, translate the coordinate system a dis-

tance 5/2 in the direction from P to B. One lattice point at least is

thereby removed from 5, and no lattice point is gained. With this

new coordinate system, the set S has at most r — \ lattice points and

so
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m(S)^r-l<r^M(S).

2. Measurable regions. We turn now to a much more restricted

class of point sets and establish the following result.

Theorem 2. If R is a bounded measurable region then m(R) tkp-(R)

:§ ilf(P), where p.(R) denotes the measure of P.

If p(R) is not an integer the inequalities can of course be made strict.

Proof. Relative to any fixed coordinate system define the function

<b(x, y) = 1       if (x, y) E R,

= 0        if (x, y) *$ P-

Define yj/(x, y) by

$(x, y) = 1        if 0 ^ x ^ 1, 0 ^ y g 1,

= 0       otherwise.

If i and j are any integers then

I   <b(x + i, y +j)dxdy =   I       I     ^(a: + j, y +./)iKtf, y)<fcdy
0    " 0 " —oo *^ — oo

/OO       /»   COI    «*(*, y)lK* - », y - j)dxdy
-00 "^ -00

=   I  I        dxdy

where Qfj is the unit square i^x^i+l, j^y^j+l. Next define

C(R,x,y) = T,<b(x + i,y+j)
•'./

where the sum extends over all pairs of integers i, j. The sum is finite

since P is bounded. Thus C(R, x, y) counts the number of points

(x+i, y+j), i = 0, ±1, +2, • ■ • , j = 0, ±1, ±2, • • • , that belong

to P. Thus C(R, 0, 0) is the number of lattice points belonging to P.

If we think of a new coordinate system parallel to the old one but with

origin at (x, y) we see that C(R, x, y) counts the number of lattice

points belonging to P relative to the new coordinate system. There-

fore we have

(2) m(R) < C(R, x, y) g M(R)

for every pair of real numbers x, y. Also by (1) we see that
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/C(R, x, y)dxdy = X I <t>(x+ i, y + j)dxdy
0    J 0 i,]   J 0    J 0

= E f f     <***? = f f <***y = /*(*)•
This with (2) implies that m(R) ^ju(P) ^M(R) because, for example,

//   m(R)dxdy = m(R).
o  J o

If we also assume that P is closed and nonempty, Theorem 2 can

be strengthened.

Theorem 3. If R is a closed, nonempty, bounded, measurable region

then m(R)^n(R)<M(R).

Proof. Impose a coordinate system so that R covers exactly m(R)

lattice points, so that m(R) = C(R, 0, 0) in the notation of the proof

of Theorem 2. Let 5<1 be a positive number so that for each lattice

point P not in R the distance from P to every point of P exceeds 5.

It follows that C(R, x, y)=m(R) for all (x, y) satisfying x2-\-y2^82.

Let Pi be the region defined by

(4) 0 ^ x,    0 ^ y,        x2 + y2 g 52,

and T2 the region

(5) O^st^l,   Ogyll,        x2 + y2 > S2.

First we observe that

nC(R, x, y)dxdy =  J  I   m(R)dxdy.

Also, since the two regions  Pi and   T2 comprise the unit square,

O^x^l, O^yiSl, equation (3) gives

m(P) =  f f C(R, x, y)dxdy + [ j   C(R, x, y)dxdy

^  f f m(R)dxdy + Jf M(R)dxdy

= x52w(P)/4 + M(P)(1 - ir52/4)

= M(P) - {Af(P) - «(fi)}rfV4 < W)

by Theorem 1.
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3. Regions constructed of disks. The inequalities of Theorems 2

and 3 can be made strict if we restrict the class of regions as follows.

We begin with a measurable topological disk D, i.e., the topological

equivalent of a circle plus interior. Let Pi be a measurable topological

disk such that DiED and such that the intersection of the boundaries

of Pi and D is at most a finite set of points.

Let Pi be the closure of P—Pi. Let D2 be a measurable topological

disk such that P2CPi and such that the intersection of the bound-

aries of D2 and Pi is at most a finite set of points. Let P2 be the

closure of T\ — D2. Continuing, let D3 be a measurable topological

disk such that P3CP2 and such that the intersection of the boundaries

of Pa and P2 is at most a finite set of points. Let P3 be the closure of

Ti—D3. Repeat this procedure a finite number of times, obtaining

the closed set Py. Say that an admissible region is one obtained by

taking the union of a finite number of disjoint nonempty sets of

the type Py.

We note that an admissible region satisfies the hypotheses of

Theorem 3. Also, an admissible region has a well-defined boundary,

namely the union of all the simple closed curves bounding the disks

used in the construction. Except for a finite number of points of the

boundary of an admissible region, the boundary in a sufficiently small

neighborhood of a boundary point is an arc. The finite number of

exceptional points will be called junction points.

Theorem 4. If R is an admissible region in the sense defined above,

then m(R) <p(R)<M(R).

In view of Theorem 3 it suffices to prove m(R) <p.(R). We begin

the proof with two lemmas.

Lemma 5. If S is any finite set of points in the plane, and Px is a

point not in S, then a coordinate system can be imposed so that Pi is a

lattice point but no point of S is a lattice point.

Proof. Let a coordinate system be imposed so that Pi is a lattice

point. The set of points 5 can be separated into two disjoint sets Si

and S2, where the members of Si are lattice points but the members

of S2 are not. Let 8 be a positive real number smaller than the shortest

distance of any point of S2 to a lattice point. Rotate the coordinate

system, with Pi as center of rotation, through a sufficiently small

angle so that no lattice point in the vicinity of any point of S2 is

moved by more than a distance 5, and so that the points of Si are no

longer lattice points. Such a rotation gives a coordinate system

satisfying the conditions of the lemma.
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Lemma 6. If R is an admissible region, a coordinate system can be

imposed so that one and only one lattice point lies on the boundary of R,

and it is not a junction point of the boundary of R.

Proof. Let S be the set of junction points of R, and let Pi be any

point on the boundary of R, with Pi not in S. Then by Lemma 5 a

coordinate system Gi can be imposed so that Pi is a lattice point, and

so that no point of S is a lattice point. Suppose that all the lattice

points on the boundary of R are Pi, P2, ■ ■ • , PT with r^.2. None of

these points is a junction point. Choose 5>0 so that except for the

points Pi, P2, ■ ■ ■ , Pr the distance from every lattice point to the

boundary of R exceeds 5. We also choose 5 to be less than the distance

from any of Pi, P2, • • • , Pr to any junction point on the boundary

of P. We separate the proof into two cases, r = 2 and r>2.

If r = 2 we try to remove P2 from the boundary by a small rotation

of the coordinate system with center of rotation Pi. This might not

succeed because the boundary of P in the vicinity of P2 might be a

circular arc with center Pt. If so, then starting from Ci again we try to

remove Pi from the boundary of P by a small rotation of the coordi-

nate system with center of rotation P2. If this does not remove Pi

from the boundary then we know that the boundary of R in the

neighborhoods of Pi and P2 consists of two circular arcs with centers

at P2 and Pi respectively.

In this case we move the entire coordinate system from its original

position Ci along a path parallel to the circular arc at Pi, starting at

Pi and moving along the circular arc in one direction. In this motion

of the coordinate system, no rotation is involved. This must remove

the lattice point at P2 from the boundary of P, since otherwise this

would mean that the boundary of R in the neighborhood of P2 would

consist of a small circular arc intersected by another. But this con-

tradicts the fact that the local boundary of R is a simple closed curve

in the neighborhood of P2. These motions of the coordinate system

can be sufficiently small so that the total distance moved by any

lattice point in the vicinity of R is less than 5, and so we get exactly

one lattice point, Pi or P2, on the boundary. And this lattice point

is not a junction point.

Next we turn to the other case of the proof, r>2. Rotate the co-

ordinate system, with Pi as center of rotation, so that no lattice

point in the vicinity of P moves a greater distance than 5/2. If in

the process of rotation the lattice points P2, Ps, ■ ■ ■ , Pr move off

the boundary, the proof of the lemma is complete in this case. If not,

we may presume that for a rotation about Pi through some small
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angle the points P2, • • • , Pk, with k^r, remain on the boundary of

P. (As to notation here, the labels P2 etc. stay with the lattice points

as they move.) From the original position of the coordinate system,

say Ci, we may presume that we have moved to a position C2 with

lattice points Pi, P2, • • • , Pk on the boundary, and such that a small

rotation of the coordinate system in both directions with Pi as center

of rotation does not move P2, • • • , Pk off the boundary of P.

Next, starting from the coordinate system position C2, make a

small rotation with P2 as center. This rotation will move P3, ■ ■ ■ , Pk

off the boundary for the following reason. If P3 for example stayed

on the boundary of the region P, this would mean that the local bound-

ary in the neighborhood of P3 would consist of a small circular arc

with center at Pi (relative to position of axes G) intersected by a

small circular arc with center P2 (relative to position of axes C2).

But the local boundary of P at P3 is a simple closed curve, so this is

impossible. Thus there remain only two lattice points, Pi and P2, on

the boundary of P. But this case has already been treated, so the

proof of Lemma 6 is complete.

We now use Lemma 6 to prove Theorem 4. We impose a coordinate

system so that exactly one lattice point, say P, lies on the boundary

of P, and P is not a junction point. Now the boundary of P in the

neighborhood of P is an arc (of a disk) and so there are points Pi

interior to R and P2 exterior to R such that the points of the straight

line segment PPi belong to P, but the points of the straight line seg-

ment PP2 (except P itself) are not in P. By translating the coordinate

system twice, once in the direction PPi and once in the direction PP2,

we can move this lattice point P off the boundary, relocating it either

inside P or outside P. This can be done without disturbing the in-or-

out relationship of all the lattice points in the plane other than P.

Denote the original coordinate system, with P a lattice point on

the boundary of P, by T. Denote the coordinate system resulting

from a small translation of V in the direction PPi by Ti, and similarly

the system resulting from a small translation of T in the direction

PP2 by r2. Let (x2, y2) be the coordinates of the origin of the T2

system when related to the Ti system. Let the function C(R, x, y) as

defined in the proof of Theorem 2 refer to the Ti coordinate system.

Then we have

C(P, 0, 0) = C(R, x2, y2) + 1 ^ m(R) + 1.

Furthermore with the Ti coordinate system there are no lattice

points on the boundary of P, and there are C(R, 0, 0) lattice points

in the interior of P. Let 5>0 be chosen so that for every one of these
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C(R, 0, 0) lattice points, a disk of radius 5 with center at the lattice

point lies entirely inside P. Then for each (x, y) satisfying x2+y2^52

we see that C(R, x, y) = C(R, 0, 0). With Pi and T2 defined as in (4)

and (5) we use (3) to get

p.(R) =   J   I   C(R, x, y)dxdy +  I J   C(R, x, y)dxdy

=   j   \   C(R, 0, 0)dxdy + j   j   C(R, x, y)dxdy

^  (  f {m(R) + l}dxdy + }  \   m(R)dxdy

= m(R) +  I  I   dxdy > m(R),
J J Tl

as asserted in Theorem 4.
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