BOUNDS FOR SOLUTIONS OF 2ND ORDER COMPLEX
DIFFERENTIAL EQUATIONS

K. M. DAS

1. It is well known [1], [2] that upper and lower bounds for the
norm of a solution of ordinary differential systems can be given in
terms of solutions of related first order scalar equations. However,
the independent variable ¢ is taken to be real there. In [3] upper
bounds for solutions of a class of 2nd order complex differential equa-

tions were obtained.
In this paper we derive upper as well as lower bounds for solutions

of the complex differential equation
¢)) ¥y +y+30,9,2) =0,

where f is an entire function of y and ', analytic in z for ]zl <R.

Let Y denote the column vector with components y, 3’ and let f
denote the function of ¥ and z which takes the values f(y, v', 2),
that is,

(¥, 2) = f(3,9, 2).
(1) is equivalent to
() Y = AY + B(Y, 27,

where A, B(Y, z) are the matrices
( 0 1) ( 0 0)
and 5
-1 0 —f 0

2. We use the absolute value norm; namely, for a vector ¥ with
components vy, y’,

respectively.

lv| =]y +|v].

LeEMMA 1. Suppose that there is a continuous, nonnegative function
g(s, t) defined on the half-strip {(s, t)]0§s< w, 0<t<R}, such that

3) |7v, 9| =gl ¥I, |2]).
Let y(2) be a solution of (1) for which
|y©@] =a, |y©] =5  a+8>0,
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and let s(t) be the maximal solution of
4 ds/dt = s(1 + g(s, 1)),

satisfying s(0) =a+b. Then, for all t (<R) such that s(t) exists, R being
assumed sufficiently large, we have

| ¥(@2)] = s, t=|z].
Proor. Let ®(2) be the fundamental matrix of ¥'=AY; that is,

() = ( cosz sin z)

—sin 2 cos 2

A solution of (2) which satisfies Y (0) = Y, is
6 YO =¥+ [ sT@BYE, oY@

where the integration is carried out along the ray 6=80,. Let us write
z = { exp(#6y), ¢ = 7 exp(i6,).
Then (5) can be written as
Y (z, 00) = (1, 60) Yo + exp(ify)

t
. f (L, 00)®~ (7, 60) B(Y (7, 8o), 7 exp(ifo)) ¥ (r, 8o)dr,
(1]

where Y(-, exp(io)) = Y(-, 0,). Also, if >0,
Y+ h0) = d(t+ k, 00) Yo+ exp(ify)

t+h

: f B(t + h, 60)F(r, 0) B(¥ (7, ),  exp(ibe)) ¥ (r, 6o)dr.
0

If we let m(¢, 6,) = I Y, 00)|, then

m(t + k, 8o) — m(z, 8o)
< | Y@+ h00) — Y, 60|
< | Y@+ 60) — &+ b, 0)3(t, 06) Y (1, 60) |
+ | @+ h, 00)(@1(t + h, 60) — &1t 60)) Y (1, O) |

t+h
= ’cp(z + h, 6o) f &1(r, 60) B(Y (r, 60), T exp(ibo)) ¥ (r, 6o)dr

+ | (¢t + &, 60) (@1t + b, 0)) — F1(1, 60)) P (1, 60) | .

Since
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®(t, 0 ii-j{:l 00) Y (¢, 6
() 0) dt (t’ 0) (t) 0)
. e Y (¢ exp(i6o)
= — exp(ifo) Ay (¢, o) = exp(wo)( 31 explid)) ),
we get
(6) m+(t, 00) é m(t) 00) (1 + g(m(ly 00)7 l))»

where ., is the right-hand derivative of m.
Hence the conclusion follows from Theorem 4.1, p. 26 of [4], in
view of the arbitrariness of 6,.

THEOREM 2. Let the hypotheses of Lemma 1 be satisfied. Then,

| ¥(2)| < e [a + fots(f)e'd-r], t=|s].

Proor. By Lemma 1,
| y(r exp(ite)) | + | ¥/ (r exp(@0) | = | ¥(r, 60| = s(),

and so
. d .
| 3 exp(0) | + — (| 3(r exp(io) |) = 5.
Therefore,
d
— (¢ | 3( exp(iby)) | ) = e7s(7),
dr
whence,
t
et| y(t exp(ifo)) | < @ +f s(r)edr.
0

The conclusion follows since 6, is arbitrary.
ExAMPLE. If g(s, t) is of the form ks», (4) becomes

ds/dt = s + kst

which can be solved explicitly. Indeed, the solution satisfving s(0)
=a+bis

e[((@ + &)= + k) — kert]=1in,

Thus, in particular, when k=n=a-4b=1, we have for {<In 2,
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| y@)| = (@+ et —1 — 2t 1n(2 — ).
3. In addition to the estimate (6), we get
O —m(t, 60) (1 + g(m (s, 00), 1)) = 1i2,(¢, B0).
This leads to

LeEmMA 3. Let y(2) be a solution of (1) as in Lemma 1. Let a(t) be the
minimal solution of

8) do/dt = — o(1 + g(a, 1)),
satisfying 0(0) =a-+b. Then, for all t (<R) such that o(t) 20, we have
© [ Y@ 200, ¢=1s].
Proor. It is sufficient to show that, for arbitrary 8,
(10) m(l, 6o) = oc(t),

where o.(t) is a solution of
do/dt = — (1 + g(o, 8)) — ¢, e> 0,

satisfying the same initial condition as a(f).
Suppose for some €>0, (10) is false. Then there exists { (=0)
such that

m(l, 8)) = ac(f),  m(t, ) < oe(f) fort> i
whence,
1y (t, 00) = (doe/dt) () = — m(l, 00)(1 — g(m(Z, 60), 1)) — ¢,

a contradiction in view of (7). This completes the proof.
Before we turn to the main theorem of this section, we state, as a
separate lemma, the following result which we require.

LEMMA 4. Let Iy(z)l =p(t, 0), z=te’, and M(t) =maxocscer p(t, 6).
Then,

(9p/30) (1, 60) = ML(D),
where M () =p(t, 0,).
ProOF. Let £>0 and let M(¢+h) =p(t+h, 64). Then,
p(t+h, 0) — p(t, 60) _ M@+ H) — M©)

h h

The conclusion is immediate in view of the fact that dp/dt exists.



224 K. M. DAS [April

THEOREM 5. Let the hypotheses of Lemma 3 be satisfied. Then,
t
(11) w2 e|o+ [owear], i sl
0

Proor. Set
y(2) = pes, z = te®.
For each ¢,
) E 9¢
12 ite?y' (3) = — (pe®) = e I:——-I-i ———:|
(12) Y (2) ao(p ) PRy

If, for fixed ¢, the maximum M (¢) of p(f, 6) is taken when 0=8,,
we have

(80/06) (¢, 60) = 0.
Therefore, (12) yields
t exp(i80)y’ (20) = pe™®(39/30) (¢, 60), 20 = ¢ exp(ifo),

that is, exp(1(6o—¢))y’(20) = (Op/0¢) (¢, 6y), by the Cauchy-Riemann
equations. Also, since dp/d¢ exists, it is easy to see that

(9p/38) (¢, 60) = O;
and so,
| ¥/ (a0) | = (3p/00)(1, 60).
Thus, from (9) and Lemma 4,
M@ + M) Z o),
that is,
(13) K.(t) = etet), K@) = e:M(t).

The proof is completed by noting that (11) is the integral form of
(13) since K(0) =a and ¢t =0.
EXAMPLE. As earlier, if g(s, £) is ks*t1, (8) is

do/dt = — o — ko™,
The solution of this equation for which ¢(0) =a4b is
et[((a + b)) + ) — kemt]tim,

Thus, when k=n=a+b=1, we have
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M@) = et[a + 3 In(2et — 1)].
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