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1. It is well known [l], [2] that upper and lower bounds for the

norm of a solution of ordinary differential systems can be given in

terms of solutions of related first order scalar equations. However,

the independent variable t is taken to be real there. In [3] upper

bounds for solutions of a class of 2nd order complex differential equa-

tions were obtained.

In this paper we derive upper as well as lower bounds for solutions

of the complex differential equation

(1) y" + y + yf(y, y', 2) = 0,

where/ is an entire function of y and y', analytic in 2 for 12| <R.

Let Y denote the column vector with components y, y' and let /

denote the function of Y and 2 which takes the values f(y, y', z),

that is,

f(Y,z)=f(y,y',z).

(1) is equivalent to

(2) T = AY + B(Y,z)Y,

where A, B(Y, 2) are the matrices

(.: a - (.; d
respectively.

2. We use the absolute value norm; namely, for a vector Y with

components y, y',

\y\ =\y\ +l/|.
Lemma 1. Suppose that there is a continuous, nonnegative function

g(s, t) defined on the half-strip {(s, t)\0 = s< 00, 0^t<R}, such that

(3) |/(F,2)|   gg(| Y\, |*|).

Let y(z) be a solution of (I) for which

|y(0)|   = a,    |/(0)|   =6,        a+'6i>0.
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and let s(t) be the maximal solution of

(4) ds/dt = 5(1 + g(s, t)),

satisfying s(0) =a+b. Then, for all t (<R) such that s(t) exists, R being

assumed sufficiently large, we have

I F(z)|   ^s(t),        <=   \z\.

Proof. Let4>(z) be the fundamental matrix of Y' = A Y; that is,

(cos z   sin z\

)•— sin z   cos z/

A solution of (2) which satisfies F(0) = F0 is

(5) Y(z) = $(z) YB+ f 'hz)^(£)B(Y($), 0 Y($)d$,

where the integration is carried out along the ray 8=8o. Let us write

z = t exp(i0o),        £ = t exp(i0o).

Then (5) can be written as

Y(t, 8B) = *(/, 80) Y0 + exp(tfo)

•   f  $(l, 0o)$-1(t, 0o)B(Y(t, 0„),rexp(t(?o))F(r, 00)dr,
Jo

where Y(-, exp(id0))=Y(-, 0O). Also, if h>0,

Y(t + h, 0e) = $(t + h, 0O) Y0 + exp(*0„)

/• t+h

•   I       *(f + A, So)*-1^, 0o)£(F(r, 0o), r exp(*0o)) F(r, 0„)<*t.
•^ o

If we let m(t, 0O) = | Y(t, 8„)\, then

m(t + h, Oo) - m(t, 0O)

^ | F0 + h, dQ) - Y(t, 00) |

^ \ Y(l + h, Oo) - Hi + h, Oo)$>~l(t, Oo) Y(t, Oo) |

+ | ■*>(/ + h, 0o)(*-'(/ + h, Oo) - $-'(1, Oo)) Y(t, Oo) |

/t+h
S^(r, Oo)B(Y(t, Oo), t exp(*0o)) Y(t, 00)dr

+ \$(t + h, 0o)(^-Kt + h, 0o) - $-l(t, Oo)) Y(l, 0o) 1 .

Since
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d<trl
*(<, Oo) —r- (t, do) Y(t, do)

dt

/-y'(t exp(i0o))\
= - exp(id0)Ay(t, do) = exp(i0o) (       ,        f.n ..   ),

\   y(t exp(t0o)) /

we get

(6) m+(t, do) = m(t, 0o)(l + g(m(t, d0), t)),

where m+ is the right-hand derivative of m.

Hence the conclusion follows from Theorem 4.1, p. 26 of [4], in

view of the arbitrariness of do.

Theorem 2. Let the hypotheses of Lemma 1 be satisfied. Then,

| y(z) |   = e~'[a + j 's(r)e^,        t =  | z\ .

Proof. By Lemma 1,

| y(r expW) |  + | /(r exp(tf0)) |   = | Y(r, <?„) |   = s(r),

and so

| y(r exp(tfo)) |   + — (| y(r exp(i»„)) | ) ^ s(r).
dr

Therefore,

— («* I y(r exp(i0o)) | ) ^eMO,
or

whence,

e' | y(2 exp(j'0o)) \   = a+  I   s(r)eTdr.
J o

The conclusion follows since 0O is arbitrary.

Example. If g(s, t) is of the form ksn, (4) becomes

ds/dt = 5 + ksn+1,

which can be solved explicitly. Indeed, the solution satisfying s(0)

= a-\-b is

el[((a + b)~n + ft) - fte"']-1'".

Thus, in particular, when k = n = a+b = l, we have for t<\n 2,
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I y(z) I   g(«+ l)er* - 1 - 2e~' ln(2 - e').

3. In addition to the estimate (6), we get

(7) -m(t, 0O)(1 + g(m(t, 0„), t)) ^ m+(t, 00).

This leads to

Lemma 3. Let y(z) be a solution of (1) as in Lemma 1. Let a(t) be the

minimal solution of

(8) da/dt = - <r(l + g(o; t)),

satisfying <r(0) =a+b. Then, for all t (<R) such that a(t) =i0, we have

(9) | F(z)|   fc,(0,       t=\z\.

Proof. It is sufficient to show that, for arbitrary do,

(10) m(t, Oo) ̂  o-M,

where a((t) is a solution of

do-/dt = - <r(l + g(a, 0) - «,        e > 0,

satisfying the same initial condition as <r(t).

Suppose for some e>0,   (10)  is false. Then there exists I ( = 0)

such that

m(t, Oo) = <re(7),        m(t, 0O) < <rc(t)    for t > t;

whence,

m+(t, Oo) ̂  (dajdt)(t) = - m(l, 0„)(1 - g(m(l, 0O), I)) - e,

a contradiction in view of (7). This completes the proof.

Before we turn to the main theorem of this section, we state, as a

separate lemma, the following result which we require.

Lemma 4. Let \y(z)\ =p(t, 0), z = teiB, and M(t) = maxo^^p(t, 0).

Then,

(dp/dt) (t,00) ^M+(t),

where M(t)=p(t, 0O).

Proof. Let h>0 and let M(t+h) =p(t+h, 0h). Then,

P(l + h, Op) - p(t, Op)     M(t + h)- M(t)

h h

The conclusion is immediate in view of the fact that dp/dt exists.
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Theorem 5. Let the hypotheses of Lemma 3 be satisfied. Then,

(11) M(t) = <r'   a +  f a(T)e*dT  ,        t = \ z\ .
J 0 J

Proof. Set

y(z) = pe**,        z = ie**.

For each /,

d Vdp d<bl
(12) iteiey'(z) = — (pe{*) = e*   — + ip—\.

If, for fixed t, the maximum M(t) of p(t, 6) is taken when 6 = 6o,

we have

(dp/d6)(t,6o) = 0.

Therefore, (12) yields

t exv(ido)y'(zo) = pe<*(d<t>/d6)(t, 60),       z0 = t exp(id0),

that is, exp(i(60— <p))y'(z0) — (dp/dt)(t, do), by the Cauchy-Riemann

equations. Also, since dp/dt exists, it is easy to see that

(dp/dt)(t,60) ^ 0;

and so,

|;/(2o)|    =   (dp/dt)(t,6o).

Thus, from (9) and Lemma 4,

M(l) + M+(t) = o-(l),

that is,

(13) K+(t) = ela(t),        K(t) = e'M(t).

The proof is completed by noting that (11) is the integral form of

(13) since K(Q)=a and t = 0.

Example. As earlier, if g(s, t) is ksn+1, (8) is

da/dt =  — a — ftan+1.

The solution of this equation for which <r(0) =a+b is

e-'[((a + b)~n + ft) - fte-"']-1'".

Thus, when ft = « = a+6 = l, we have
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M(t) ^ tr'[a + \ ln(2e< - 1)].
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