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1. Introduction. The Stokes multipliers of subdominant solutions

of the differential equation y" — (xm-j-X)y = 0, where " =d2/dx2 and

X is a parameter, are well known in case m = \ or m = 2. The sub-

dominant solutions of this differential equation are essentially Airy

functions for m = 1 and parabolic cylinder functions for m = 2 and

these functions have been studied extensively [l, p. 446 and p. 686],

However, for integral m greater than two, there seems to be no special

functions with which subdominant solutions can be identified. Fur-

ther, the techniques for obtaining the Stokes multipliers in the cases

m = \, 2 are based on detailed knowledge of the structure of the sub-

dominant solutions, for example integral representations.

In this note we shall treat the differential equation, m = 3,

y" - (x* + \)y = 0,

by a method which is not based on the detailed structure of any par-

ticular special functions. From the discussion it will be apparent that

the method can be applied to more general cases.

For a discussion of the methods that have been utilized in studying

Stokes multipliers as numerical constants see H. L. Turrittin [4].

However, the study of the dependence of Stokes multipliers on param-

eters seems to be rather new.

Let us consider the differential equation

(1.1) y" - (x* + \)y = 0,

where x is the complex independent variable, X is a complex param-

eter, and y is an unknown function of x and X. By application of re-

sults of P. F. Hsieh and Y. Sibuya [2] for differential equations of the

form y" —P(x)y = 0, P(x) a polynomial of x, we can derive the fol-

lowing theorem:

Theorem 1. Equation (1.1) has a solution

(1.2) y=f(x,x)

such that (i) / is an entire function of x and\; (ii) / andf admit respec-
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lively the asymptotic representations

f(x, X) = x-3'4{l + 0(*-1/2)} exp { -(2/5)*8/2},

/'(*, X) = x3'*{ -1 + 0(x-^2)} exp { -(2/5)x5'2},

uniformly on each compact set in the \-plane as x tends to infinity in any

sector of the form:

(1.4) | arg x\ — 3t/5 — p0,

where po is an arbitrary positive number, and

(1.5) arg (xr) = r arg x

for any constant r.

Let us denote by Sj 0 = 0, ±1, ±2) the sectors defined respectively

by

(1.6-j) | arg x - 2jv/S | < tt/5.

Put

(1.7) w = exp (2m/5).

Then the function f(w~'x, u2i\) satisfies equation (1.1) and this solu-

tion tends to zero as x tends to infinity along any direction in the

sector Sj. Hence the solution

(1.8-i) y = f(a-% ««X)

is said to be subdominant in the sector Sj. In particular the solution

(1.2) is subdominant in the sector So. It is easily seen that the two

solutions (1.8-1) and (1.8-2) are linearly independent. Hence the

solution (1.2) is a linear combination of those two solutions. Put

(1.9) f(x, X) = c^X^co-1*, «2X) + c2(\)f(w~2x, co4X).

In order to study the asymptotic behavior of f(x, X) as x tends to

infinity in the sector 52, we must compute C\ and c2. These quantities

are Stokes multipliers of the solution/(x, X). First of all we shall show

that C2(X) is identically equal to — <o. Then we shall derive asymptotic

representations of Ci(X) as X tends to infinity in any given direction.

2. Derivation of c2(X). In this section we shall show that c2(X) is

identically equal to — a>. In fact, the solution (1.8-1) and its deriva-

tive admit respectively the asymptotic representations

f(w~\ co2X) = co3/%-8/4{ 1 + 0(x-l'2)\ exp {(2/5)x^2},

or1/'(or1*, co2X) = co3/4x3/4{l + 0(x~1'2)} exp {(2/S)^'2}
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uniformly on each compact set in the X-plane as x tends to infinity

in any sector of the form | arg x — 27r/51 ^3ir/5 — po- Since this sector

and the sector (1.4) have a common part, and the Wronskian of any

two solutions of equation (1.1) is independent of x, we can compute

the Wronskian A of f(x, X) and f(co~1x, co2\) from (1.3) and (2.1) by

letting x tend to infinity; namely we have

\f(x, X)      f(u~lx, a)2X)
(2.2) A = = 2a,3'4.

\f'(x,\)      w-y^x, co2X)

From (1.9) it is easy to derive A= —co""1C2(X)A, hence we get c2(X)

= — CO.

3. Asymptotic representation of Ci(X). Let us denote by P(X) the

Wronskian oif(x, X) and f(co~2x, w4X). Then from (2.2) and

(3.1) f(x, X) = Ci(\)f(oi~lx, <o2X) - o,f(w-% «4X)

we can derive

(3.2) D(\) = 2or1'4c1(X).

Hence Ci(X) is an entire function of X. We shall study D(\) instead of

ci(X) as X tends to infinity. The Wronskian P(X) being independent of

x, we get

(3.3) D(X) = co-2/'(0, co4X)/(0, X) - f(0, co4X)/'(0, X).

This suggests that we start with an asymptotic evaluation of /(0, X)

and/'(0, X). Such a result is given in the following theorem:

Theorem 2. Let 5o be an arbitrary positive number. Then as X tends

to infinity in the sector

(3.4) I arg X | ^ tt - 80,

the quantities f(0, X) andf'(0, X) admit respectively the asymptotic repre-

sentations

/(0, X) = \-w*{ 1 + o(l)} exp {K\'i'},

( ' f'(0, X) = A^f-l + o(l)} exp {A-X6'6},

where arg(X7) =y arg \for any constant y and

K=   f     {(<3+ l)112 - twjdt.
Jo

This theorem can be proved by reconstructing the solution f(x, X)

along the positive real axis in the x-plane. A method for such a com-
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putation is available in the book of M. A. Neumark [3, pp. 257-260

and pp. 279-288]. Hence we shall omit the proof of Theorem 2.

Now if we assume that X is in the sector

(3.6) -3tc/S + So ̂  arg X g tt - 80,

the quantities X and co_1X satisfy the condition (3.4). Hence

/(0, co4X) = w^X-^Jl + o(l)} exp {Kw-VW6},

f'(0, w4X) = co-^X1'4! -1 + o(l)} exp {Ku-vW*}

asX tends to infinity. Inserting (3.5) and (3.7) into (3.3), we can prove

the following theorem :

Theorem 3. As X tends to infinity in the sector (3.6), the quantity

£i(X) admits the asymptotic representation

(3.8) Cl(X) = co~2{ -1 + <?(1)} exp {K(l + af-6/6)X6/e}.

This straightforward method can not be used in any sector other

than the sector (3.6). For example, in the sector

—tt + 50 ^ arg X ^ — 3tt/5 — o0,

the quantities X and w4X satisfy the condition (3.4). Hence

/(0, co4X) = co-'X-'i^l + o(l)} exp {A-co10'3X6'6},

/'(0, co4X) = coX1'4}-! + o(l)} exp {AV/V6}.

If we try to use these expressions for the computation of D(\), we

obtain

D(\) = {ar2co - co-1 + 0(1)} exp {K(l + co1("3)X5/6}.

But since co~2oi— «~1 = 0, these expressions are not suitable for the

computation of D(K). Therefore we need more precise representations

of/(0, X) and/'(0, X). To derive such representations, we use Theo-

rem 3. First of all, we replace X by w3X in formula (3.1). Then we get

/(0, X) = {C,(co3X) } -»{/(0, a,3X) + «/(0, co2X)},

/'(0, X) = {Cl(co3X)}-i{co/'(0, co3X) +/'(0, co2X)}.

Notice that, if X is in the sector

(3.10) -x - 4tt/5 + 5o ̂  arg X ^ - 3tt/5 - o0)

then the quantities «3X and co4X satisfy the condition (3.4), and fur-

thermore the quantity gj3X satisfies the condition (3.6). Hence from

formula (2.2), Theorems 2 and 3, we can derive the following theo-

rem:
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Theorem 4. As X tends to infinity in the sector (3.10), the quantity

Ci(X) admits the asymptotic representation

d(\) = co-2[{-l + o(l)} exp \K(oT^ - or^X5'6}

+ { -1 + o(l)} exp {K(\ + «-«'«)A«/«} ].

In the proof of Theorem 4, we use the identities <o1/2= — or2 and

w3 = ar2. The first term of (3.11) dominates the second term if

arg X<— 47r/5, and the second term dominates the first term if

arg X> —47r/5. Along the direction arg X = —47r/5 we can locate zeros

of ci(X) by using (3.11). If X0 is one of those zeros of ci(X), then the

solution f(x, X0) is subdominant in the sector 52 as well as in So-

Finally we consider the sector

(3.12) -ir + 80 ^ arg X ^ tt/5 - 50.

In this case, we replace X by co4X in formula (3.9). Then

(3 13) f(0' W'X) = *Cl(w2X)} ~' */(°' "2X) + U/(0' WX) *'

/'(0, <o4X) = {el(««X)}-1{«r(0J co2X) +/'(0, «X)}.

Notice that, if X is in the sector (3.12), the quantities X and wX satisfy

the condition (3.4), and furthermore the quantity w2X satisfies the

condition (3.6). Hence from formula (2.2), Theorems 2 and 3, we can

derive the following theorem:

Theorem 5. As X tends to infinity in the sector (3.12), the quantity

Ci(X) admits the asymptotic representation (3.11).

The three sectors (3.6), (3.10) and (3.12) cover the X-plane com-

pletely. Thus the behavior of Ci(X) as X tends to infinity in any given

direction can be given by one of Theorems 3, 4 and 5.

Remark. The asymptotic representations of/(0, X) and f'(0, X) in

the sector

(3.14) | argX + tt| ^ S0

can also be derived from (3.9). We merely state the results:

The quantities /(0, X) and f'(0, X) admit respectively the asymptotic

representations

f(0, X) = - i\-l'*{l + o(l)} [exp { -XTX6'6} + i exp {Kw^X^}]

•exp {A-(l +a>-6'6)Xfi/6})

f'(0, X) = tX1'4}! + o(l)} [-exp { -K\w) + i exp {A^co^X8'6}]

•exp {K(l + ar5/6)X6/6}

as X tends to infinity in the sector (3.14).



1967] correction 243

References

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with

formulas, graphs, and mathematical tables, National Bureau of Standards, Applied

Mathematics Series 55, 3rd printing, with corrections, March, 1965.

2. P. F. Hsieh and Y. Sibuya, On the asymptotic integration of second order linear

ordinary differential equations with polynomial coefficients, J. Math. Anal. Appl. 16

(1966), 84-103.
3. M. A. Neumark, Lineare Differential-Operatoren, Akademie-Verlag, Berlin,

1960.
4. H. L. Turrittin, Solvable related equations pertaining to turning point problems,

Proc. Sympos. Asymptotic Solutions of Differential Equations and Their Applications,

pp. 27-52, Wiley, New York, 1964.

University of Minnesota

CORRECTION TO  "PERIODIC SOLUTIONS OF
FOURTH-ORDER DIFFERENTIAL EQUATIONS"

GEORGE R. SELL1

In the proof of the theorem in [l] we need the fact that the solu-

tions of

(3) *r=f(x,m

are defined for all t}t0. The argument that is given, namely that we

can assume that \\f(x, y)\\ 2*1, is not correct. Therefore an extra hy-

pothesis is needed to insure the existence of solutions of (3) for all

t=z0. For example, this global existence property would be satisfied

if one assumed that for every compact set KER2 there exist constants

M and B such that

\\f(x, y)\\ ^ M\\x\\ + B        (xER\yEK).

The author wishes to thank J. A. Yorke for pointing out this error.
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