A DENSITY THEOREM FOR WALSH FUNCTIONS

J. J. PRICE

1. Introduction. A theorem of Levinson [3, p. 13] on the closure of sets of exponentials contains the following result. Let $S = \{n_j\}$ be an increasing sequence of positive integers. Define

$$D(S) = \limsup_{\xi \to 1-0} \sup_{n \to \infty} (\Lambda(n) - \Lambda(\xi n))/(n - \xi n)$$

where $\Lambda(n)$ is the number of elements of S less than n. Suppose D(S)=1. Then for each positive ϵ , there is a subset E_{ϵ} of the unit interval whose measure exceeds $1-\epsilon$ and such that the family $[\exp(2\pi i n_j x): n = S]$ is total in $L^2(E_{\epsilon})$.

The proof of Levinson's theorem requires deep complex methods. In this paper, we obtain an analogous result for Walsh functions using elementary methods. Our result requires the weaker hypothesis that $\rho(S) = 1$ where

$$\rho(S) = \limsup_{k \to \infty} \limsup_{n \to \infty} (\Lambda(n+k) - \Lambda(n))/k.$$

It is an exercise to verify that for every sequence S, $\rho(S) \ge D(S)$. Equality need not hold. For example, if S is the sequence of all integers n such that $2^k \le n < 2^k + k$ for some k, then $\rho(S) = 1$ but D(S) = 0.

For definitions and properties of Walsh functions, see N. J. Fine [1].

2. **Preliminaries.** First some notation. All numbers mentioned will be nonnegative integers. The unit interval [0, 1) will be denoted by I, the dyadic interval $[q2^{-p}, (q+1)2^{-p})$ by I(p, q). Associated with I(p, q) are its characteristic functions, denoted by $\psi(p, q)$ and the Haar function supported on I(p, q), denoted by h(p, q). (For definition of Haar functions see [2].)

In the next section we use two results which we quote here. Both are special cases of known theorems, the first by A. A. Talalyan [5] and the second by Robert E. Zink and the author [4].

THEOREM 1. Let Φ be a sequence of real functions defined a.e. on I. Then Φ is total in measure on I if and only if for each positive ϵ there is a subset E_{ϵ} of I whose measure exceeds $1-\epsilon$ such that Φ is total in $L^2(E_{\epsilon})$.

THEOREM 2. Let $\Phi = \{\phi_n\}$ be a sequence of Haar functions. For each n let E_n be the support of ϕ_n . Let $E = \limsup E_n$. Then Φ is total in measure on I if and only if I - E is a null set.

3. A density theorem for Walsh functions.

THEOREM. Let $S = \{n_j\}$ be an increasing sequence of positive integers and let Ψ_S be the family of Walsh functions $[\psi_{n_j}: n_j \in S]$. If $\rho(S) = 1$, then for every positive ϵ there is a subset E_{ϵ} of I whose measure exceeds $1 - \epsilon$ such that Ψ_S is total in $L^2(E_{\epsilon})$.

PROOF. By virtue of Theorem 1, it suffices to prove Ψ_S is total in measure on I. This would follow from the existence of a measure preserving transformation T of I onto itself that is one-to-one except for a denumerable set of points and such that the family $\Psi'_S = [\psi_{n_j} \circ T : n_j \in S]$ is total in measure on I. By virtue of Theorem 2, it suffices to show the existence of a transformation T such that the linear span of Ψ'_S contains a family of Haar functions of the form $[h(p_i, q): 0 \le q < 2^{p_i}, p_1 < p_2 < p_3 \cdots]$.

Let p be given. From the assumption $\rho(S) = 1$, it follows that there is an increasing sequence $\{j_i\}$ such that S contains all integers n for which $j_i 2^p \le n < (j_i + 1)2^p$, or equivalently, such that

(1)
$$(\Lambda((j_i+1)2^p) - \Lambda(j_i2^p))/2^p = 1.$$

For if $\rho(S) = 1$, it is not hard to verify that also

$$\limsup \sup_{n \to \infty} \lim \sup_{n \to \infty} (\Lambda((u+v)2^p) - \Lambda(u2^p))/v2^p = 1.$$

Consequently, there exist increasing sequences, $\{u_i\}$ and $\{v_i\}$ with $v_{i+1} > v_i + u_i$ such that

(2)
$$(\Lambda((u_i + v_i)2^p) - \Lambda(u_i2^p))/v_i2^p > 1 - 2^{-p}.$$

At least one of the quantities

(3)
$$(\Lambda((j+1)2^p) - \Lambda(j2^p))/2^p, \quad v_i \leq j < v_i + u_i,$$

must exceed $1-2^{-p}$; otherwise (2) could not be satisfied. But since the quantities (3) are multiples of 2^{-p} , there exists a value $j=j_i$ for which (1) holds.

Let p_1 be any integer. There is an integer j_1 such that ψ_S contains the set $[\psi_j\colon j=j_12^{p_1}+m,\ 0\leq m<2^{p_1}]$. By definition of the Walsh functions, the elements of this set have the form $\psi_{r_1}\psi_m$ where $r_1=j_12^{p_1}$. It is known ([1], p. 373) that the characteristic functions $\chi(p_1,q)$ are linear combinations of the functions $[\psi_m\colon 0\leq m<2^{p_1}]$. Hence, the linear span of Ψ_S contains the set $[\psi_{r_1}\chi(p_1,q)\colon 0\leq q<2^{p_1}]$.

For some p_2 , with $p_2 > p_1$, ψ_{r_1} is constant on each interval $I(p_2, s)$.

Each interval $I(p_1, q)$ is partitioned into $2^{p_2-p_1}$ intervals of the form $I(p_2, s)$. On half of these, ψ_{r_1} has the value +1; on the others ψ_{r_1} has the value -1. Obviously then, the elements of this partition of $I(p_1, q)$ can be permuted in such a way that $c_1\psi_{r_1}\chi(p_1, q)$ is transformed into the Haar function $h(p_1, q)$, $c_1 = 2^{(p_1-1)/2}$.

Repeating the argument given above with p_2 in place of p_1 , we see that the span of Ψ_S contains $[\psi_{r_2}\chi(p_2, q): 0 \le q < 2^{p_2}]$. The function ψ_{r_2} is constant on intervals $I(p_3, s)$ where $p_3 > p_2$.

By induction, we obtain an increasing sequence $\{p_i\}$ such that for each i the span of Ψ_S contains $[\psi_{r_1}\chi(p_i, q): 0 \le q < 2^{p_i}]$.

As noted earlier, there is a transformation T_1 of I onto itself that permutes the intervals $I(p_2, s)$, $0 \le s < 2^{p_2}$, in such a way that the intervals $I(p_1, q)$ are invariant and $c_1\psi_{r_1}\chi(p_1, q) \circ T_1 = h(p_1, q)$ for each q, $0 \le q < 2^{p_1}$. There is a permutation T_2 of the intervals $I(p_3, s)$ leaving the intervals $I(p_2, q)$ invariant such that

$$c_i \psi_{r_i} \chi(p_i, q) \circ T_2 \circ T_1 = h(p_i, q);$$

$$0 \leq q < 2^{p_i}, \quad i = 1, 2, \quad c_i = 2^{(p_i - 1)/2}.$$

By induction, there is a sequence $\{T_n\}$ of transformations of I onto itself such that for each n, T_n permutes the intervals $I(p_{n+1}, s)$ leaving invariant all intervals $I(p_i, q)$, $i \leq n$, and such that

$$c_i \psi_{r_i} \chi(p_i, q) \circ T_n \circ T_{n-1} \circ \cdots \circ T_1 = h(p_i, q);$$

$$0 \leq q < 2^{p_i}, \quad i = 1, 2, \cdots, n.$$

It is a standard fact that the sequence $\{T_n\}$ induces a measure preserving transformation T of I onto itself that is one-to-one except for a countable set of points. Clearly $c_i\psi_{r,\chi}(p_i, q) \circ T = h(p_i, q)$; $0 \le q < 2^{p_i}, i = 1, 2, \cdots$. Thus the span of the system $[\psi_{n_j} \circ T: n_j \in S]$ contains a family of Haar functions $[h(p_i, q): 0 \le q < 2^{p_i}, p_1 < p_2 < \cdots]$. This concludes the proof.

REFERENCES

- 1. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
- 2. S. S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, reprint, Chelsea, New York, 1951.
- 3. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., Vol. 26, Amer. Math. Soc., Providence, R. I., 1940.
- 4. J. J. Price and R. E. Zink, On sets of completeness for families of Haar functions, Trans. Amer. Math. Soc. 119 (1965), 262-269.
- 5. A. A. Talalyan, The representation of measurable functions by series, Uspehi Mat. Nauk 15 (1960), 77-142 = Russian Math. Surveys 15 (1960), 77-136.