MAXIMAL FIELDS DISJOINT FROM CERTAIN SETS
P. J. MCCARTHY!

Suppose that C is an algebraically closed field and that Q is a sub-
field of C. If S is a nonempty subset of C disjoint from Q, it follows
from an application of Zorn’s lemma that there is a subfield & of C
which is maximal with respect to the properties that QCk and k and
S are disjoint. The problem is to describe the field extension C/k.
When S consists of a single element this has been done by Quigley
[4, Theorems 1, 2 and 3]. In this note we shall give several theorems
which describe C/k when S consists of exactly two elements. When S
contains more than two elements, some of the arguments used in the
proof of Theorem 2 fail.

The first theorem holds when S is any finite (nonempty) subset of
C disjoint from Q. It generalizes one of Quigley’s results [4, Lemma 1].

THEOREM 1. If S is a finite set then the extension C/k is algebraic.

Proor. If C/k is transcendental, and if ¢ is an element of C which
is transcendental over k, then k(¢) contains some element of S, say a;.
Then a, is transcendental over k, so a1 & k(a?) and &=k (a?). Hence,
k(a?) contains some element of S, say a;, and a;>%a;. Then a; is
transcendental over &, so a;€k(a3) and k>=k(a3). Also, a;& k(al) since
k(a2) Ck(a?). We repeat this argument until S is exhausted. If a,
is the final element of S we have k=k(a2)C - - - Ck(a)) Ck(a?) and
ai€k(a?) fori=1, - - -, n. This contradicts the defining property of
k. Hence, C/k must be algebraic.

Henceforth, we assume that S consists of two distinct elements, a
and b, of C. A finite extension K of k will be called cyclic if it is normal
over k and if G(K/k), the group of automorphisms of K which leave
each element of & fixed, is cyclic. We do not require that K be sepa-
rable over k.

THEOREM 2. There are primes p and q (which may be equal) such
that every finite extension of k in C is cyclic of degree pTq* over k, for
some integers r and s.

We consider two cases. In the first case, we suppose that either
a&k(b) or b&k(a): to be definite, assume the latter. If K is a proper
extension of % in C then either a €K or b&E K, and so we always have

Received by the editors September 17, 1965.
1 Research supported by NSF Grant GP1738.

347



348 P. J. McCARTHY [April

bEK. In Quigley’s terminology, k is a maximal field without . Thus,
in this case, C/k is described by Quigley’s results, and the result of
the theorem holds.

From now on we shall assume that a€k(b) and b&k(a). We con-
tinue the proof of Theorem 2 with a series of lemmas, the first of
which is given in [4].

LEvMA 1. Let N be a finite normal separable extension of a field F.
Let p be a prime divisor of [N: F|. Then there is a sequence of extensions
FCL,CL,..C -+ CLy=N such that for 1=1, - - -, r, Liy/L; is
normal of degree p, and p does not divide [L,: F).

LEMMA 2. There are primes p and q such that k(a)/k is normal of
degree p and k(b)/k is normal of degree q.

ProoF. Assume that % is perfect. We show first that there is a
normal extension of & in C which contains one of a and b but not the
other. Assume this is not the case, and let N be the smallest normal
extension of & in C which contains a. Then b&EN and, in fact, N is the
smallest normal extension of & in C which contains b. If we use Lemma
1 and the fact that a€Ek(b) and b k(a), we conclude that [k(a): k]
and [k(b): k] are relatively prime. Let p be a prime which divides
[£(a): k). Since p divides [N: k] it follows from [4, Theorem 6] that
there is a maximal subfield K of C without b, having exponent p, with
kC K. Suppose K>k. Then a €K and so k(a) CK. By [4, Theorem 2],
[KN: K] is a power of p, and so the same is true of [N: KN\N] by
the TNI (Theorem of Natural Irrationality [1, p. 149]). Note that
[N: KN\N]#1 since bEK. If H is the subgroup of G(N/k) having
KNN as its fixed field, then H is a p-subgroup of G(N/k). Let F be
the fixed field of the Sylow-p-subgroup of G(N/k) which contains
H. Then FCKNN. If F=F then [N: k] is a power of p, so p divides
[k(): k], which is not true. Hence FsFk, and since b€ F we have
k(a) CF. But this cannot happen since p does not divide [F: k].
Thus, we are forced to conclude that K =k. Then, by [4, Theorem 2],
[E(®): k] is a power of p, again contrary to fact.

Thus, we may assume that there is a normal extension of % in C
which contains @ but not b. An application of Lemma 1 shows that
k(a)/k is normal of degree p. If k(b)/k is not normal, there is a k-
automorphism ¢ of C such that k(s (b)) #=k(b). Then bcEk(c (b)) and
so k(a)Zk(a(b)). If we apply o~ ! to k(c(b)) and use the fact that
k(a)/k is normal, we get a&k(b), contrary to assumption. Thus,
k(b)/k is normal, and we can use Lemma 1 to show that [k(b): k] =¢
for some prime g.
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Now, assume that k is imperfect and let p be the characteristic of C.
Let c&C be such that ¢k but ¢c?&k. Then, k(c)/k is purely insepa-
rable of degree p and so contains exactly one of ¢ and b, say a. Thus
k(a)/k is normal of degree p. By the argument used in the preceding
paragraph we show that k(b)/k is normal. If k(b)/k is separable it fol-
lows from Lemma 1 that [k(b): k] =q for some prime q. If k(b)/k is
inseparable, then k(b?) k£ (b) [1, p. 130], and since a & k(b?) we must
have b»&k. Then k(b)/k is purely inseparable of degree p. Actually,
this last situation cannot occur. For, if k(a)/k and k(b)/k are both
purely inseparable of degree p, then so is k(e+b)/k and so either
aEk(@+b) or bEEk(a+b). In the former case b&Ek(a), and in the
latter a €k(b), contrary to assumption. This completes the proof of
Lemma 2.

The following lemma is proved easily by induction.

LeMMA 3. Let G be a group of order p», where p is a prime and n=2.
If G has more than one subgroup of index p, then it has at least p+1
subgroups of index p.

LEMMA 4. If k is perfect then p #q.

PRrROOF. Suppose p=¢. We use Lemma 1, and the fact that k(a)
#k(b), to show that if NV is the smallest normal extension of % in C
which contains both a and b, then [N: k] =p" and #=2. Since k(a)
and k(b) are the only subfields of N of degree p over k, G(N/k) has
exactly two subgroups of index p, which contradicts Lemma 3. Thus,
p#q.

To complete the proof of Theorem 2 we show that every finite nor-
mal separable extension of & in C is cyclic of degree p7g* for some inte-
gers r and s. It follows from this, that for a given positive integer #,
k has at most one separable extension of degree # in C. Hence, by
[2, Theorem 9], every finite extension of % in C is cyclic. Since every
finite extension of k in C has a degree over its separable part equal to
some power of the characteristic of C, Theorem 2 will follow.

Let N be a finite normal separable extension of & in C. If % is im-
perfect we continue to assume ¢ is inseparable over k. Then ad N,
so bEN and it follows from Lemma 1 that [N: k] is a power of
g=[E(b): k]. Also, N has exactly one subfield, k(b), of degree g over k.
Hence, G(N/k) is cyclic [3, Theorem 12.5.3].

Suppose that k is perfect. If N contains only one of a and b we
repeat the above argument to show that N/k is cyclic of degree a
power of p or a power of g. Assume N contains both a and b. Then
G=G(N/k) has exactly two maximal subgroups, one of index p and
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the other of index ¢ (and p #£¢). These maximal subgroups are normal
in G, since k(a)/k and k(b)/k are normal, and so G is nilpotent [3,
Corollary 10.3.4]. Hence, G is the direct product of its Sylow sub-
groups [3, Theorem 10.3.4]. If G, and G, are the Sylow-p-subgroup
and Sylow-g-subgroup of G, respectively, we see by Lemma 1 that
G=G,XG,. The fixed field of G, contains exactly one subfield, k(b),
of degree g over k. Hence, G is cyclic. Similarly, G, is cyclic. Hence,
G is cyclic of degree p7g? for some integers r and s. This completes the
proof of Theorem 2.

Suppose k is perfect. Since p#¢ we may assume p=2. It follows
from [2, Theorem 11] that for each integer 7 20 there is an extension
of k in C of degree p™ over k. Furthermore, it follows from what we
have proved that there is only one such extension. Call it k,. Then
kE=ky Cki=k(a)Ck.C - - -, and we let k, be the union of the &,. It
follows that k., is a maximal subfield of C without 5. We have k.,
={c|cECand [k(c): k] =p* for some t<r}. The structure of C/k., is
given by the first three theorems of [4].

Now, suppose that k is imperfect. As above, we take k(a)/k to be
purely inseparable and k(b)/% to be separable. For each integer =0
let k,=k(@*”). Then k=kCki=k(a)Ck:C --- and [k.: k]=p"
Furthermore, k.= {clcEC and c"'Ek}. If k. is the union of the &,
then k,=k? " [1, p. 128] and k., is a maximal subfield of C without b.
Again, the structure of C/k, is given by theorems in [4].

In both the perfect and imperfect cases we set K,= {c[ c&EC, cis
separable over k, and [k(c): k] =¢* for some t<7}. Then K, is a sub-
field of C and K,C K, for all . Let K, be the union of the K,. It
may happen, when C has characteristic zero and ¢=2, that K, =k(b)
for all »=1. If this is not the case, then K,C K, for all »r=0.

We can now state the following theorem, which completes our
description of C/k.

THEOREM 3. Let L be an extenston of k in C. Then, for some r and s,
one or both of which may be infinity, we have L=Fk.K,. In this case,
[L: k]=prg".

PRrOOF. If kis perfect weset E= {¢|c€Land [k(c): k]isapowerof p |
and F= {¢|cEL and [k(c): k] is a power of ¢}. If k is imperfect we
let E be the fixed field of G(L/k) and F be the separable part of L/k.
In both cases, E =k, for some r, F=K, for some s, and L=EF.

Finally, we can use arguments similar to those used in the proofs
of the last three theorems of [4] to obtain existence theorems for the
various cases that have arisen.



1967] MAXIMAL FIELDS DISJOINT FROM CERTAIN SETS 351

REFERENCES

1. N. Bourbaki, Algébre, Chapters 4 and 5, Actualités Sci. Ind., No. 1102, Her-
mann, Paris, 1950.

2. Basil Gordon and E. G. Straus, On the degrees of finite extensions of a field, Proc.
Sympos. Pure Math., Vol. 8, pp. 5665, Amer. Math. Soc., Providence, R. I., 1965.

3. Marshall Hall, The theory of groups, Macmillan, New York, 1959.

4. Frank Quigley, Maximal subfields of an algebrascally closed field not containing a
given element, Proc. Amer. Math. Soc. 13 (1962), 562-566.

THE UNIVERSITY OF KANSAS



