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Suppose that C is an algebraically closed field and that Q is a sub-

field of C. If 5 is a nonempty subset of C disjoint from Q, it follows

from an application of Zorn's lemma that there is a subfield k of C

which is maximal with respect to the properties that QCk and k and

5 are disjoint. The problem is to describe the field extension C/k.

When 5 consists of a single element this has been done by Quigley

[4, Theorems 1, 2 and 3]. In this note we shall give several theorems

which describe C/k when 5 consists of exactly two elements. When S

contains more than two elements, some of the arguments used in the

proof of Theorem 2 fail.

The first theorem holds when 5 is any finite (nonempty) subset of

Cdisjoint from Q. It generalizes one of Quigley's results [4, Lemma l].

Theorem 1. If S is a finite set then the extension C/k is algebraic.

Proof. If C/k is transcendental, and if / is an element of C which

is transcendental over k, then k(t) contains some element of S, say a\.

Then ai is transcendental over k, so ai^k(al) and k^k(al). Hence,

k(a?i) contains some element of S, say a2, and a2j^a\. Then a2 is

transcendental over k, so a2^k(al) and k9ik(al). Also, ai^k(al) since

k(al)Qk(al). We repeat this argument until 5 is exhausted. If an

is the final element of 5 we have k9^k(a^)C. ■ ■ ■ Qk(al)C.k(al) and

ai(£.k(a%) for * = 1, • • • , n. This contradicts the defining property of

k. Hence, C/k must be algebraic.

Henceforth, we assume that 5 consists of two distinct elements, a

and b, of C. A finite extension K of k will be called cyclic if it is normal

over k and if G(K/k), the group of automorphisms of K which leave

each element of k fixed, is cyclic. We do not require that K be sepa-

rable over k.

Theorem 2. There are primes p and q (which may be equal) such

that every finite extension of k in C is cyclic of degree p'q' over k, for

some integers r and s.

We consider two cases. In the first case, we suppose that either

aEk(b) or bEk(a): to be definite, assume the latter. If K is a proper

extension of k in C then either aEK or bEK, and so we always have
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bEK. In Quigley's terminology, k is a maximal field without b. Thus,

in this case, C/k is described by Quigley's results, and the result of

the theorem holds.

From now on we shall assume that a(£k(b) and b(£k(a). We con-

tinue the proof of Theorem 2 with a series of lemmas, the first of

which is given in  [4].

Lemma 1. Let N be a finite normal separable extension of a field F.

Let p be a prime divisor of [N: p]. Then there is a sequence of extensions

FQLrELr-iE ■ ■ ■ ELa = N such that for i=\, ■ ■ ■ , r, Li-i/Lt is

normal of degree p, and p does not divide \LT: P].

Lemma 2. There are primes p and q such that k(a)/k is normal of

degree p and k(b)/k is normal of degree q.

Proof. Assume that k is perfect. We show first that there is a

normal extension of k in C which contains one of a and b but not the

other. Assume this is not the case, and let N be the smallest normal

extension of k in C which contains a. Then bE A and, in fact, N is the

smallest normal extension of k in C which contains b. If we use Lemma

1 and the fact that a(£k(b) and b(£k(a), we conclude that [k(a): k]

and [k(b): k] are relatively prime. Let p be a prime which divides

[k(a): k]. Since p divides [N: k] it follows from [4, Theorem 6] that

there is a maximal subfield K of C without b, having exponent p, with

kQK. Suppose K^k. Then aEKand so k(a)QK. By [4, Theorem 2],

[KN: K] is a power of p, and so the same is true of [N: K(~\N] by

the TNI (Theorem of Natural Irrationality [l, p. 149]). Note that

[N: KC\N]^\ since b$K. If H is the subgroup of G(N/k) having

Kf~\N as its fixed field, then If is a ^-subgroup of G(N/k). Let P be

the fixed field of the Sylow-£-subgroup of G(N/k) which contains

H. Then FC.KT\N. If F=k then [N: k] is a power of p, so p divides

[k(b): k], which is not true. Hence F^k, and since bEF we have

k(a)cZF. But this cannot happen since p does not divide [P: k\.

Thus, we are forced to conclude that K = k. Then, by [4, Theorem 2],

[k(b): k] is a power of p, again contrary to fact.

Thus, we may assume that there is a normal extension of k in C

which contains a but not b. An application of Lemma 1 shows that

k(a)/k is normal of degree p. If k(b)/k is not normal, there is a k-

automorphism a of C such that k(a(b))Ak(b). Then b(£k(<r(b)) and

so k(a)C.k(<r(b)). If we apply a~l to k(a(b)) and use the fact that

k(a)/k is normal, we get aEk(b), contrary to assumption. Thus,

k(b)/k is normal, and we can use Lemma 1 to show that [k(b): k] —q

for some prime q.
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Now, assume that k is imperfect and let p be the characteristic of C.

Let cGPbe such that c(£k but cpEk. Then, k(c)/k is purely insepa-

rable of degree p and so contains exactly one of a and b, say a. Thus

k(a)/k is normal of degree p. By the argument used in the preceding

paragraph we show that k(b)/k is normal. If k(b)/k is separable it fol-

lows from Lemma 1 that [k(b): k] =q for some prime q. If k(b)/k is

inseparable, then k(bp)^k(b) [l, p. 130], and since aEk(bp) we must

have bvEk. Then k(b)/k is purely inseparable of degree p. Actually,

this last situation cannot occur. For, if k(a)/k and k(b)/k are both

purely inseparable of degree p, then so is k(a+b)/k and so either

aEk(a-\-b) or bEk(a+b). In the former case bEk(a), and in the

latter aEk(b), contrary to assumption. This completes the proof of

Lemma 2.

The following lemma is proved easily by induction.

Lemma 3. Let G be a group of order pn, where p is a prime and »^2.

If G has more than one subgroup of index p, then it has at least p-\-f

subgroups of index p.

Lemma 4. // k is perfect then p^q.

Proof. Suppose p = q. We use Lemma 1, and the fact that k(a)

9^k(b), to show that if N is the smallest normal extension of k in C

which contains both a and b, then [N: k]=pn and «Si2. Since k(a)

and k(b) are the only subfields of N of degree p over k, G(N/k) has

exactly two subgroups of index p, which contradicts Lemma 3. Thus,

p*q.
To complete the proof of Theorem 2 we show that every finite nor-

mal separable extension of k in C is cyclic of degree prq" for some inte-

gers r and s. It follows from this, that for a given positive integer n,

k has at most one separable extension of degree n in C. Hence, by

[2, Theorem 9], every finite extension of k in C is cyclic. Since every

finite extension of k in C has a degree over its separable part equal to

some power of the characteristic of C, Theorem 2 will follow.

Let N be a finite normal separable extension of k in C. If k is im-

perfect we continue to assume a is inseparable over k. Then a(£N,

so bEN and it follows from Lemma 1 that [N: k] is a power of

2= [k(b): k]. Also, N has exactly one subfield, k(b), of degree q over k.

Hence, G(N/k) is cyclic [3, Theorem 12.5.3].

Suppose that k is perfect. If N contains only one of a and b we

repeat the above argument to show that N/k is cyclic of degree a

power of p or a power of q. Assume N contains both a and b. Then

G — G(N/k) has exactly two maximal subgroups, one of index p and
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the other of index q (and p9^q). These maximal subgroups are normal

in G, since k(a)[k and k(b)/k are normal, and so G is nilpotent [3,

Corollary 10.3.4]. Hence, G is the direct product of its Sylow sub-

groups [3, Theorem 10.3.4]. If Gp and Gq are the Sylow-p-subgroup

and Sylow-g-subgroup of G, respectively, we see by Lemma 1 that

G = GpXGq. The fixed field of Gv contains exactly one subfield, k(b),

of degree q over k. Hence, Gq is cyclic. Similarly, Gp is cyclic. Hence,

G is cyclic of degree pTq' for some integers r and s. This completes the

proof of Theorem 2.

Suppose k is perfect. Since p^q we may assume p^2. It follows

from [2, Theorem 11 ] that for each integer r^O there is an extension

of k in C of degree pr over k. Furthermore, it follows from what we

have proved that there is only one such extension. Call it kr. Then

k = k0 Eh = k(a)Ek2E ■ ■ ■ , and we let k„ be the union of the kT. It

follows that kx is a maximal subfield of C without b. We have kr

= {c\ cEC and [k(c): k] =pl for some t^r}. The structure of C/kx is

given by the first three theorems of [4].

Now, suppose that k is imperfect. As above, we take k(a)/k to be

purely inseparable and k(b)/k to be separable. For each integer r^.0

let kr = k(a,'l~r). Then k = kQEki = k(a)EhE • • • and [kr: k]=pr.
Furthermore, kT= {c|cGG and cv'Ek}. If &„ is the union of the kr,

then kx = kp~" [l, p. 128] and kx is a maximal subfield of C without b.

Again, the structure of C/k„ is given by theorems in [4].

In both the perfect and imperfect cases we set Kr= {e|cGG. c is

separable over k, and [k(c): k] =q' for some t^r}. Then Kr is a sub-

field of C and KrCKr+i for all r. Let K„ be the union of the Kr. It

may happen, when C has characteristic zero and q = 2, that K~r = k(b)

for all r£;l. If this is not the case, then KrEKr+i for all r 3:0.

We can now state the following theorem, which completes our

description of C/k.

Theorem 3. Let L be an extension of k in C. Then, for some r and s,

one or both of which may be infinity, we have L = kTKs. In this case,

[L: k]=p'q>.

Proof. If k is perfect we set E= {c|cGPand [&(c):&]isapowerofp}

and P= {c|cGP and [k(c): k] is a power of q}. If k is imperfect we

let E be the fixed field of G(L/k) and P be the separable part of L/k.

In both cases, E = kT for some r, F = K, for some s, and L = EF.

Finally, we can use arguments similar to those used in the proofs

of the last three theorems of [4] to obtain existence theorems for the

various cases that have arisen.
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