MAXIMAL FIELDS DISJOINT FROM CERTAIN SETS

P. J. MCCARTHY¹

Suppose that C is an algebraically closed field and that Q is a subfield of C. If S is a nonempty subset of C disjoint from Q, it follows from an application of Zorn's lemma that there is a subfield k of C which is maximal with respect to the properties that $Q \subseteq k$ and k and S are disjoint. The problem is to describe the field extension C/k. When S consists of a single element this has been done by Quigley [4, Theorems 1, 2 and 3]. In this note we shall give several theorems which describe C/k when S consists of exactly two elements. When S contains more than two elements, some of the arguments used in the proof of Theorem 2 fail.

The first theorem holds when S is any finite (nonempty) subset of C disjoint from Q. It generalizes one of Quigley's results [4, Lemma 1].

THEOREM 1. If S is a finite set then the extension C/k is algebraic.

PROOF. If C/k is transcendental, and if t is an element of C which is transcendental over k, then k(t) contains some element of S, say a_1 . Then a_1 is transcendental over k, so $a_1 \notin k(a_1^2)$ and $k \neq k(a_1^2)$. Hence, $k(a_1^2)$ contains some element of S, say a_2 , and $a_2 \neq a_1$. Then a_2 is transcendental over k, so $a_2 \notin k(a_2^2)$ and $k \neq k(a_2^2)$. Also, $a_1 \notin k(a_2^2)$ since $k(a_2^2) \subseteq k(a_1^2)$. We repeat this argument until S is exhausted. If a_n is the final element of S we have $k \neq k(a_n^2) \subseteq \cdots \subseteq k(a_2^2) \subseteq k(a_1^2)$ and $a_i \notin k(a_n^2)$ for $i = 1, \cdots, n$. This contradicts the defining property of k. Hence, C/k must be algebraic.

Henceforth, we assume that S consists of two distinct elements, a and b, of C. A finite extension K of k will be called *cyclic* if it is normal over k and if G(K/k), the group of automorphisms of K which leave each element of k fixed, is cyclic. We do not require that K be separable over k.

THEOREM 2. There are primes p and q (which may be equal) such that every finite extension of k in C is cyclic of degree p^rq^* over k, for some integers r and s.

We consider two cases. In the first case, we suppose that either $a \in k(b)$ or $b \in k(a)$: to be definite, assume the latter. If K is a proper extension of k in C then either $a \in K$ or $b \in K$, and so we always have

Received by the editors September 17, 1965.

¹ Research supported by NSF Grant GP1738.

 $b \in K$. In Quigley's terminology, k is a maximal field without b. Thus, in this case, C/k is described by Quigley's results, and the result of the theorem holds.

From now on we shall assume that $a \notin k(b)$ and $b \notin k(a)$. We continue the proof of Theorem 2 with a series of lemmas, the first of which is given in [4].

LEMMA 1. Let N be a finite normal separable extension of a field F. Let p be a prime divisor of [N:F]. Then there is a sequence of extensions $F \subseteq L_r \subset L_{r-1} \subset \cdots \subset L_0 = N$ such that for $i = 1, \dots, r$, L_{i-1}/L_i is normal of degree p, and p does not divide $[L_r:F]$.

LEMMA 2. There are primes p and q such that k(a)/k is normal of degree p and k(b)/k is normal of degree q.

Proof. Assume that k is perfect. We show first that there is a normal extension of k in C which contains one of a and b but not the other. Assume this is not the case, and let N be the smallest normal extension of k in C which contains a. Then $b \in N$ and, in fact, N is the smallest normal extension of k in C which contains b. If we use Lemma 1 and the fact that $a \notin k(b)$ and $b \notin k(a)$, we conclude that [k(a): k]and [k(b): k] are relatively prime. Let p be a prime which divides [k(a):k]. Since p divides [N:k] it follows from [4, Theorem 6] that there is a maximal subfield K of C without b, having exponent ϕ , with $k \subseteq K$. Suppose $K \neq k$. Then $a \in K$ and so $k(a) \subseteq K$. By [4, Theorem 2]. [KN:K] is a power of p, and so the same is true of $[N:K\cap N]$ by the TNI (Theorem of Natural Irrationality [1, p. 149]). Note that $[N: K \cap N] \neq 1$ since $b \notin K$. If H is the subgroup of G(N/k) having $K \cap N$ as its fixed field, then H is a p-subgroup of G(N/k). Let F be the fixed field of the Sylow-p-subgroup of G(N/k) which contains H. Then $F \subseteq K \cap N$. If F = k then [N:k] is a power of p, so p divides [k(b): k], which is not true. Hence $F \neq k$, and since $b \notin F$ we have $k(a) \subseteq F$. But this cannot happen since p does not divide [F: k]. Thus, we are forced to conclude that K = k. Then, by [4, Theorem 2], [k(b): k] is a power of p, again contrary to fact.

Thus, we may assume that there is a normal extension of k in C which contains a but not b. An application of Lemma 1 shows that k(a)/k is normal of degree p. If k(b)/k is not normal, there is a k-automorphism σ of C such that $k(\sigma(b)) \neq k(b)$. Then $b \notin k(\sigma(b))$ and so $k(a) \subseteq k(\sigma(b))$. If we apply σ^{-1} to $k(\sigma(b))$ and use the fact that k(a)/k is normal, we get $a \in k(b)$, contrary to assumption. Thus, k(b)/k is normal, and we can use Lemma 1 to show that [k(b):k]=q for some prime q.

Now, assume that k is imperfect and let p be the characteristic of C. Let $c \in C$ be such that $c \notin k$ but $c^p \in k$. Then, k(c)/k is purely inseparable of degree p and so contains exactly one of a and b, say a. Thus k(a)/k is normal of degree p. By the argument used in the preceding paragraph we show that k(b)/k is normal. If k(b)/k is separable it follows from Lemma 1 that [k(b):k]=q for some prime q. If k(b)/k is inseparable, then $k(b^p) \neq k(b)$ [1, p. 130], and since $a \notin k(b^p)$ we must have $b^p \in k$. Then k(b)/k is purely inseparable of degree p. Actually, this last situation cannot occur. For, if k(a)/k and k(b)/k are both purely inseparable of degree p, then so is k(a+b)/k and so either $a \in k(a+b)$ or $b \in k(a+b)$. In the former case $b \in k(a)$, and in the latter $a \in k(b)$, contrary to assumption. This completes the proof of Lemma 2.

The following lemma is proved easily by induction.

LEMMA 3. Let G be a group of order p^n , where p is a prime and $n \ge 2$. If G has more than one subgroup of index p, then it has at least p+1 subgroups of index p.

LEMMA 4. If k is perfect then $p \neq q$.

PROOF. Suppose p=q. We use Lemma 1, and the fact that $k(a) \neq k(b)$, to show that if N is the smallest normal extension of k in C which contains both a and b, then $[N:k]=p^n$ and $n\geq 2$. Since k(a) and k(b) are the only subfields of N of degree p over k, G(N/k) has exactly two subgroups of index p, which contradicts Lemma 3. Thus, $p\neq q$.

To complete the proof of Theorem 2 we show that every finite normal separable extension of k in C is cyclic of degree p^rq^s for some integers r and s. It follows from this, that for a given positive integer n, k has at most one separable extension of degree n in C. Hence, by [2, Theorem 9], every finite extension of k in C is cyclic. Since every finite extension of k in C has a degree over its separable part equal to some power of the characteristic of C, Theorem 2 will follow.

Let N be a finite normal separable extension of k in C. If k is imperfect we continue to assume a is inseparable over k. Then a
otin N, so b
otin N and it follows from Lemma 1 that [N:k] is a power of q = [k(b):k]. Also, N has exactly one subfield, k(b), of degree q over k. Hence, G(N/k) is cyclic [3, Theorem 12.5.3].

Suppose that k is perfect. If N contains only one of a and b we repeat the above argument to show that N/k is cyclic of degree a power of p or a power of q. Assume N contains both a and b. Then G = G(N/k) has exactly two maximal subgroups, one of index p and

the other of index q (and $p \neq q$). These maximal subgroups are normal in G, since k(a)/k and k(b)/k are normal, and so G is nilpotent [3, Corollary 10.3.4]. Hence, G is the direct product of its Sylow subgroups [3, Theorem 10.3.4]. If G_p and G_q are the Sylow-p-subgroup and Sylow-q-subgroup of G, respectively, we see by Lemma 1 that $G = G_p \times G_q$. The fixed field of G_p contains exactly one subfield, k(b), of degree q over q. Hence, q is cyclic. Similarly, q is cyclic. Hence, q is cyclic of degree q over q for some integers q and q. This completes the proof of Theorem 2.

Suppose k is perfect. Since $p \neq q$ we may assume $p \neq 2$. It follows from [2, Theorem 11] that for each integer $r \geq 0$ there is an extension of k in C of degree p^r over k. Furthermore, it follows from what we have proved that there is only one such extension. Call it k_r . Then $k = k_0 \subset k_1 = k(a) \subset k_2 \subset \cdots$, and we let k_∞ be the union of the k_r . It follows that k_∞ is a maximal subfield of C without b. We have $k_r = \{c \mid c \in C \text{ and } [k(c): k] = p^t \text{ for some } t \leq r\}$. The structure of C/k_∞ is given by the first three theorems of [4].

Now, suppose that k is imperfect. As above, we take k(a)/k to be purely inseparable and k(b)/k to be separable. For each integer $r \ge 0$ let $k_r = k(a^{p^{1-r}})$. Then $k = k_0 \subset k_1 = k(a) \subset k_2 \subset \cdots$ and $[k_r: k] = p^r$. Furthermore, $k_r = \{c \mid c \in C \text{ and } c^{p^r} \in k\}$. If k_∞ is the union of the k_r , then $k_\infty = k^{p^{-\infty}}$ [1, p. 128] and k_∞ is a maximal subfield of C without b. Again, the structure of C/k_∞ is given by theorems in [4].

In both the perfect and imperfect cases we set $K_r = \{c \mid c \in C, c \text{ is separable over } k$, and $[k(c): k] = q^t$ for some $t \leq r\}$. Then K_r is a subfield of C and $K_r \subseteq K_{r+1}$ for all r. Let K_{∞} be the union of the K_r . It may happen, when C has characteristic zero and q = 2, that $K_r = k(b)$ for all $r \geq 1$. If this is not the case, then $K_r \subset K_{r+1}$ for all $r \geq 0$.

We can now state the following theorem, which completes our description of C/k.

THEOREM 3. Let L be an extension of k in C. Then, for some r and s, one or both of which may be infinity, we have $L = k_r K_s$. In this case, $[L: k] = p^r q^s$.

PROOF. If k is perfect we set $E = \{c \mid c \in L \text{ and } [k(c):k] \text{ is a power of } p\}$ and $F = \{c \mid c \in L \text{ and } [k(c):k] \text{ is a power of } q\}$. If k is imperfect we let E be the fixed field of G(L/k) and F be the separable part of L/k. In both cases, $E = k_r$ for some r, $F = K_s$ for some s, and L = EF.

Finally, we can use arguments similar to those used in the proofs of the last three theorems of [4] to obtain existence theorems for the various cases that have arisen.

REFERENCES

- 1. N. Bourbaki, Algèbre, Chapters 4 and 5, Actualités Sci. Ind., No. 1102, Hermann, Paris, 1950.
- 2. Basil Gordon and E. G. Straus, On the degrees of finite extensions of a field, Proc. Sympos. Pure Math., Vol. 8, pp. 56-65, Amer. Math. Soc., Providence, R. I., 1965.
 - 3. Marshall Hall, The theory of groups, Macmillan, New York, 1959.
- 4. Frank Quigley, Maximal subfields of an algebraically closed field not containing a given element, Proc. Amer. Math. Soc. 13 (1962), 562-566.

THE UNIVERSITY OF KANSAS