ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF THE WAVE EQUATIONS

A. R. BRODSKY

In the theory of scattering for hyperbolic equations, it is necessary to estimate the behavior of solutions to the unperturbed problem as well as the perturbed for large |t|. At present most estimates for the wave equation or the relativistic wave equation are in the sup norm. (See [1]-[5].) The purpose of this paper is to present some simple but rather interesting estimates in L_2 of solutions to

$$\Box u = m^2 u, \qquad m \ge 0,$$

where

$$\square = \sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} - \frac{\partial^{2}}{\partial t^{2}}.$$

In particular, we will show that for finite energy solutions u of (1) $||u(x, t)||_2$ has a definite limit depending on the initial data. It will follow that if $||u(x, t)||_2$ tends to 0, $u \equiv 0$. This seems to be a well-known "folk theorem."

1. The L_2 norm. Let $B = (m^2 - \Delta^2)^{1/2}$ considered as a linear operator on $L_2(\mathbb{R}^n)$. If m > 0, B has a bounded inverse. Let $B(z) = (m^2 + z^2)^{1/2}$ where $z = (z_1, \dots, z_n)$ and $z^2 = z_1^2 + \dots + z_n^2$. We define the domain of B to be all $f \in L_2$ such that $B(z)F(z) \in L_2$ where F is the Fourier transform of f. For suitable initial data, the following two integrals are constant.

(2)
$$\Pi = \int_{\mathbb{R}} \left\{ \sum_{i=1}^{n} \left(\frac{\partial u(x,t)}{\partial x_{i}} \right)^{2} + u_{t}^{2} + m^{2} u^{2} \right\} dx = \int_{\mathbb{R}} \left\{ (Bu)^{2} + u_{t}^{2} \right\} dx,$$

(3)
$$\hat{\Gamma} = \int_{R_n} \{ u^2 + (B^{-1}u_i)^2 \} dx$$
 (if $m = 0, u_i(x, 0) \in \mathfrak{D}_{B^{-1}}$).

THEOREM 1. Let u(x, 0) = f, $u_t(x, 0) = g$.

(1)
$$\lim_{|t|\to\infty} \int \left\{ \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i} \right)^2 + m^2 u \right\} dx = \frac{\Pi}{2},$$

(2)
$$\lim_{|t|\to\infty}\int_{R_{-}}u^{2}(x,t)dx=\frac{\Gamma}{2}.$$

Received by the editors February 1, 1966.

PROOF. We will prove statement (2). (1) is similar. We first note that

$$\Gamma = \Gamma(0) = \int_{R_n} f^2 + (B^{-1}g)^2 dx$$

$$= \int_{\widehat{R}_n} |F|^2 + (m^2 + |\xi|^2)^{-1} |G|^2 d\xi$$

where F, G are the Fourier transforms of f, g respectively with respect to x. By the functional calculus,

$$U(z, t) = (\cos t B(z)) F(z) + (B^{-1}(z) \sin t B(z)) G(z).$$

But

$$\begin{split} &\int_{R_{n}} u^{2} dx = \int_{\widehat{E}_{n}} \left| U \right|^{2} dz \\ &= \int_{\widehat{E}_{n}} \left[\cos^{2} tB \left| F \right|^{2} + B^{-2} \sin^{2} tB \left| G \right|^{2} + B^{-1} \sin 2tB (F\overline{G} + \overline{F}G) \right] dz \\ &= \frac{1}{2} \int_{\widehat{E}_{n}} \left| F \right|^{2} + B^{-2} \left| G \right|^{2} \\ &+ \int_{\widehat{E}_{n}} \left[\frac{1}{2} \cos 2tB (\left| F \right|^{2} - \left| B^{-1}G \right|^{2}) + B^{-1} \sin 2tB (F\overline{G} + \overline{F}G) \right] d\widehat{z} \xi. \end{split}$$

The theorem will be proved if we show the second integral tends to zero. However, this follows by a trivial modification of the Riemann-Lebesgue lemma.

COROLLARY. Let u be solution of [u = 0] with $u(x, 0) \in L^2$ and $u_t(x, 0)$ in the domain of B^{-1} . Then if $||u(\cdot, t)||_{L_2}$ tends to zero as $|t| \to \infty$, then u = 0 for all t.

PROOF. By the assumptions, $\Gamma = 0$. Thus u = 0.

REMARK. Theorem 1 seems to suggest an equipartition or virial law of some kind for the energies.

REFERENCES

- 1. A. R. Brodsky, Existence of wave operators for non-linear equations, Pacific J. Math., (to appear).
- 2. ——, An estimate for spherical means and some applications, Abstract 619–175, Notices Amer. Math. Soc. 12 (1965), 109.
- 3. I. E. Segal, La dispersion pour l'equations non-lineares relativistes aux derivees partielles, C. R. Acad. Sci. Paris 261 (1965), 5323.
 - 4. ——, Mathematical theory of dispersion, (to appear).
- 5. W. A. Strauss, La decroissance asymptotique des solutions des equations d'onde non-lineaires, C. R. Acad. Sci. Paris 256 (1963), 2749.

University of California, Los Angeles