CONFORMAL EQUIVALENCE OF COUNTABLE DENSE SETS

W. D. MAURER

In [1, p. 297, problem 24], Erdös asks:

"Does there exist an entire function f, not of the form $f(z) = a_0 + a_1 z$, such that the number f(x) is rational or irrational according as x is rational or irrational? More generally, if A and B are two denumerable, dense sets, does there exist an entire function which maps A onto B?"

The following theorem settles the second part of this question as it is stated.

THEOREM. Let A and B be two countable dense sets in the complex plane. Then there exists an entire function taking A onto B.

PROOF. Let a and b be enumerations of A and B, i.e., $A = \{a_1, a_2, \dots\}$, $B = \{b_1, b_2, \dots\}$. We construct two new enumerations c and d of A and B respectively, together with a sequence f_i of polynomials such that $f(c_i) = d_i$ for each i, where $f = \sum_{j=1}^{\infty} f_j$.

The construction is as follows. Let $c_1 = a_1$, $d_1 = b_1$, $f_1 = d_1$ (the constant function). At the (2n-1)st stage, suppose that c_1, \dots, c_{2n-1} ; d_1, \dots, d_{2n-1} ; and f_1, \dots, f_{2n-1} have been chosen, such that $g_{2n-1}(c_i) = d_i$, $1 \le i \le 2n-1$, where $g_{2n-1} = \sum_{j=1}^{2n-1} f_j$. Let $c_{2n} = a_j$, where j is the smallest index such that $a_j \ne c_i$, $1 \le i \le 2n-1$, and set $y_{2n} = g_{2n-1}(c_{2n})$. Let the function $h_{2n-1} = (z-c_1)(z-c_2) \cdot \dots \cdot (z-c_{2n-1})$, and consider the functions $g_{2n-1} + k_{2n-1}h_{2n-1}$, for

$$|k_{2n-1}| < \frac{1}{(2n-1)!u_1u_2 \cdot \cdot \cdot \cdot u_{2n-1}} = m_{2n-1}$$

where $u_i = \max(1, |c_i|)$, $1 \le i \le 2n-1$. These functions map c_{2n} into $\{y_{2n} + k_{2n-1}h_{2n-1}(c_{2n}): |k_{2n-1}| < m_{2n-1}\}$, which is a neighborhood of y_{2n} because $h_{2n-1}(c_{2n}) \ne 0$, and consequently contains an element of the dense set $B - \{d_1, \dots, d_{2n-1}\}$, which we denote by d_{2n} . For the corresponding value of k_{2n-1} , we set $f_{2n} = k_{2n-1}h_{2n-1}$, $g_{2n} = g_{2n-1} + f_{2n}$, which clearly implies $g_{2n}(c_i) = d_i$, $1 \le i \le 2n$, and $g_{2n} = \sum_{j=1}^{2n} f_j$. This brings us to the 2nth stage. Let $d_{2n+1} = b_j$, where j is the smallest index such that $b_j \ne d_i$, $1 \le i \le 2n$, and set x_{2n+1} such that $g_{2n}(x_{2n+1}) = d_{2n+1}$; this is always possible since g_{2n} is a polynomial. Let the function $h_{2n} = (z-c_1)(z-c_2) \cdot \cdot \cdot \cdot (z-c_n)$, and consider the functions $g_{2n} + k_{2n}h_{2n}$, for

Received by the editors January 25, 1966.

$$|k_{2n}| < \frac{1}{(2n)!u_1u_2 \cdot \cdot \cdot \cdot u_{2n}} = m_{2n}$$

where $u_i = \max(1, |c_i|)$, $1 \le i \le 2n$. These functions map all elements of some neighborhood of x_{2n+1} into d_{2n+1} , and hence there exists a particular value of k_{2n} for which $g_{2n+1}(c_{2n+1}) = d_{2n+1}$, where $f_{2n+1} = k_{2n}h_{2n}$, $g_{2n+1} = g_{2n} + f_{2n+1}$, and c_{2n+1} is a member of the dense set $A - \{c_1, \dots, c_{2n}\}$.

The functions $|f_j|$ are majorized by

$$\frac{(z-c_1)(z-c_2)\cdots(z-c_j)}{j!u_1u_2\cdots\cdots u_j}=\frac{1}{j!}\left(\frac{z-c_1}{u_1}\right)\left(\frac{z-c_2}{u_2}\right)\cdots\left(\frac{z-c_j}{u_j}\right).$$

For each i, $1 \le i \le j$, if $|c_i| \le 1$, then $u_i = 1$ and $|(z-c_i)/u_i| = |z-c_i| \le |z|+1$, while if $|c_i| > 1$, then $u_i = |c_i|$ and $|(z-c_i)/u_i| \le |z/|c_i|| + |c_i/|c_i|| = |z/|c_i||+1 < |z|+1$. Thus the functions $|f_j|$ are also majorized by $(|z|+1)^j/j!$, and therefore $f = \sum_{j=1}^{\infty} f_j$ is an entire function with $f(c_i) = d_i$ for all i. By virtue of the "back-and-forth" induction, the maps c and d are enumerations, i.e., $A = \{c_1, c_2, \cdots\}$ and $B = \{d_1, d_2, \cdots\}$, since in fact $\{c_1, \cdots, c_{2n}\} \supseteq \{a_1, \cdots, a_n\}$ and $\{d_1, \cdots, d_{2n}\} \supseteq \{b_1, \cdots, b_n\}$ for each n. Therefore f takes A onto B.

In particular, this gives a negative answer to the question posed by F. Gross in [2]. A more general question remains open, which in one sense is a closer generalization of the first question asked by Erdös:

Let A and B be two denumerable, dense subsets of the complex plane. Does there exist an entire function which maps A onto B and \overline{A} onto \overline{B} ?

According to the proof given above, we can say only that there exists a function whose restriction to A gives a one-to-one map from A to B. The author is grateful to the referee for his helpful comments on this paper.

REFERENCES

- 1. Paul Erdös, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
- 2. Fred Gross, Function theory, Research Problem 19, Bull. Amer. Math. Soc. 71 (1965), 853.

University of California, Berkeley