THE WEAK RADICAL OF A RING

KWANGIL KOH AND A. C. MEWBORN

1. **Introduction.** In [2] a weakly transitive ring of linear transformations is defined as follows:

DEFINITION A. Let V be a left vector space over a division ring D and let R be a ring of linear transformations of V. Consider V as right R-module. Then R is weakly transitive provided there is a right order K in D and a (K, R)-submodule M of V such that M is uniform as R-module, DM = V, and such that if $\{m_i\}_{i=1}^n$ is a finite D-linearly independent subset of M and if $\{y_i\}_{i=1}^n$ is a sequence from M, then there exists $r \in R$, $k \in K$, $k \neq 0$, such that $m_i r = k y_i$, $1 \leq i \leq n$.

By a weakly transitive representation of a ring R we mean a homomorphism of R onto a weakly transitive ring.

DEFINITION 1.1. If R is a ring the weak radical, W(R), of R is the intersection of the set of all ideals which are kernels of weakly transitive representations. If R has no weakly transitive representation, then W(R) = R.

Of importance in studying weakly transitive rings is the notion of an almost maximal right ideal, which is also defined in [2].

DEFINITION B. If I is a proper right ideal of a ring R then I is almost maximal provided that

- (1) if J_1 and J_2 are right ideals of R and $J_1 \cap J_2 = I$, then $J_1 = I$ or $J_2 = I$, i.e. I is irreducible,
 - (2) if $a \in R$ and $[I:a]^1 \supset I$, then $a \in I$,
- (3) if J is a right ideal of R, $J \supset I$, then $N(I) \cap J \supset I$, where $N(I) = \{r \in R : rI \subseteq I\}$, and if $a \in R$ such that $[J : a] \supseteq I$ then $[J : a] \supseteq I$.

It was shown in [2] that if I is an almost maximal right ideal of R, then M=R/I is a uniform right R-module with centralizer K=N(I)/I. M has extended centralizer D [see 2, p. 67] in which K is a right order, and M can be extended to a (D,R)-module V such that DM=V and such that R induces a weakly transitive ring of linear transformations of the D-space V.

In this paper we observe that W(R/W(R)) = (0) and prove that W(R) is the intersection of the set of almost maximal right ideals of R. From the fact that a (two-sided) ideal of a weakly transitive ring is also weakly transitive we deduce that if S is an ideal of R then $W(S) = W(R) \cap S$. Finally, if n is a positive integer then $W(R_n) = W(R)_n$.

Received by the editors June 20, 1966.

¹ By [I:a], we mean the set $\{r \in R: ar \in I\}$.

It is interesting to note that in severel instances the usual proofs of the analogues of our theorems in the Jacobson structure theory (See, for example, [1, p. 10]) make very strong use of the notion of quasi-regularity. Since in the weak radical theory we have no analogue of this notion the proofs which we give suggest proofs of the classical theorems which do not depend on quasi-regularity. The authors have been unable to devise a proof of the equality of the left and right radicals without using quasi-regularity and this problem for the weak radical remains open.

From the definition of W(R) it follows that if W(R) = (0), then R is a subdirect sum of weakly transitive rings. It is likely that this hypothesis of "weak semisimplicity" will serve in many cases where a ring is assumed to be semisimple.

2. The proof of the following theorem is straightforward and will be omitted.

THEOREM 2.1. If R is a ring then W(R/W(R)) = (0).

LEMMA 2.2. If I is an almost maximal right ideal of a ring R and M = R/I, then for each $m \in M$, $m \neq 0$, the right ideal $m^{\gamma} = \{r \in R : mr = 0\}$ is almost maximal.

PROOF. mR is a submodule of M and hence is uniform. Since $mR \cong R/m^{\gamma}$, m^{γ} is an irreducible right ideal. Suppose $a \in R$ and $[m^{\gamma}:a] = (ma)^{\gamma} \supset m^{\gamma}$. By Lemma 3.5 of [2] it follows that ma = 0; i.e. $a \in m^{\gamma}$.

Now suppose J is a right ideal of R and $J \supset m^{\gamma}$. $mJ \neq (0)$, so there exists $j \in J$ with $mj \neq 0$. It follows directly from the proof of Theorem 3.7 of [2] that there exists $b \in R$ such that $(mjb)^{\gamma} = m^{\gamma}$ (in the terminology of [2] mjb and m are D-linearly dependent and $mjb \neq 0$). Then $jb \in J \cap N(m^{\gamma})$ and $jb \notin m^{\gamma}$. Hence $J \cap N(m^{\gamma}) \supset m^{\gamma}$.

Again assume $J \supset m^{\gamma}$, and let $r \in R$ such that $[J:r] \supseteq m^{\gamma}$. We show $[J:r] \supset m^{\gamma}$. First suppose $(mr)^{\gamma} = m^{\gamma}$. Then $mJ \neq (0)$ and $rJ + m^{\gamma} \supset m^{\gamma}$. Let $n \in (rJ + m^{\gamma}) \cap J$, $n \notin m^{\gamma}$. We can choose n = rj, $j \in J$. Then $n \in J$ implies $j \in [J:r]$. Also $rj = n \notin m^{\gamma}$ implies $j \notin (mr)^{\gamma} = m^{\gamma}$. Hence $[J:r] \supset m^{\gamma}$. Now suppose $(mr)^{\gamma} \neq m^{\gamma}$. Again by Lemma 3.5 of [2] there exists $a \in R$ such that mra = 0 and $ma \neq 0$. Then $a \in [m^{\gamma}:r] \subseteq [J:r]$ but $a \notin m^{\gamma}$. Hence $[J:r] \supset m^{\gamma}$.

The lemma is proved.

THEOREM 2.3. If $W(R) \neq R$, then W(R) is the intersection of the set of almost maximal right ideals of R.

PROOF. Let I be an almost maximal right ideal and let K be the

kernel of the associated weakly transitive representation of R, i.e. $K = \{r \in R: Rr \subseteq I\}$. If $n \in N(I)$, $n \in I$, then [I:n] = I. It follows that $K \subseteq [I:n] = I$. Therefore W(R) is contained in the intersection of the set of almost maximal right ideals.

Conversely, if r is in the given intersection, then for any almost maximal right ideal I we have $r \in \cap \{m^{\gamma}: m \in R/I\}$ by the lemma. This implies that r is in the kernel of each representation associated with an almost maximal right ideal. Hence $r \in W(R)$. The theorem is proved.

THEOREM 2.4. If R is a ring and ϕ is a homomorphism of R, then $W(R)\phi \subseteq W(R\phi)$.

PROOF. Suppose ψ is a weakly transitive representation of $R\phi$. Then $\phi\psi$ is a weakly transitive representation of R. Hence $W(R)\phi\subseteq \operatorname{Ker} \psi$.

THEOREM 2.5. Suppose R is a weakly transitive ring of linear transformations and J is a (two-sided) ideal of R. Then J is also weakly transitive.

PROOF. Suppose R acts in the (left) vector space V over a division ring D. Let K and M be as given in Definition A. Clearly M is a (K, J)-submodule of V and M is uniform as J-module. Suppose $\{m_i\}_{i=1}^n$ is a finite D-linearly independent subset of M and $\{y_i\}_{i=1}^n$ is a sequence from M. Let $a \in J$, $a \neq 0$, and let $m \in M$ such that $ma \neq 0$. There exist $\{r_j\}_{j=1}^n$ in R and $\{k_j\}_{j=1}^n$ in $k, k_j \neq 0$, such that $m_i r_j = 0, j \neq i$ and $m_i r_i = k_i m$. Let I be an almost maximal right ideal such that M = R/I. Since $m_i r_i a = k_i m a \neq 0$, each i, there exist $\{s_i\}_{i=1}^n$ in R, $s_i \in I$ such that $m_i r_i$ $a s_i = k'_i m_i$, where $k'_i \in K$, $k'_i \neq 0$, $1 \leq i \leq n$. Now $\{k'_i m_i\}_{i=1}^n$ is a D-linearly independent subset of M. Hence there exists $r' \in R$, $k \in K$, $k \neq 0$, such that $k'_i m_i r' = k y_i, 1 \leq i \leq n$. Let $r = \sum_{i=1}^n r_i a s_i r'$. Then $r \in J$ and $m_i r = k y_i$, $1 \leq i \leq n$. Therefore J is weakly transitive.

THEOREM 2.6. If R is a ring and S is a two-sided ideal of R, then $W(S) = W(R) \cap S$.

PROOF. Let $S \neq (0)$. Suppose $a \in S$, $a \notin W(R)$. Let ϕ be a weakly transitive representation of R such that $\phi(a) \neq 0$. $\phi(R)$ is a weakly transitive ring and $\phi(S)$ is a nonzero two-sided ideal of $\phi(R)$. By Theorem 2.5, $\phi(S)$ is a weakly transitive ring. Hence $a \notin W(S)$. Therefore $W(S) \subseteq W(R) \cap S$.

Conversely, suppose $a \in S$, $a \notin W(S)$. Let I be an almost maximal right ideal of S such that $Sa \nsubseteq I$. Let M = S/I and let $m \in M$

such that $ma \neq 0$. There exists $s_0 \in S$ such that $m^{\gamma} = \{s \in S : ms = 0\}$ = $\{s \in S : ms_0s = 0\} = (ms_0)^{\gamma}$. Then $ms_0a \neq 0$. Let $I^* = \{r \in R : m(s_0r) = 0\}$. I^* is clearly closed under addition. Suppose $r \in I^*$, $t \in R$. If $rt \in I^*$ then $m(s_0rt) \neq 0$. Hence there exists $s \in S$ such that $0 \neq m(s_0rt)s = m(s_0r)(ts)$, which is absurd. Thus I^* is a right ideal of R. We show that I^* is almost maximal in R.

Let J^* be a right ideal of R such that $J^* \supset I^*$. Let $j \in J^*$, $j \notin I^*$. Then $m(s_0j) \neq 0$. Hence there exists $s \in S$ such that $m(s_0js) \neq 0$. Then $js \in S \cap J^*$, $js \in I^*$. Thus $S \cap J^* \supset S \cap I^* = m^{\gamma}$. Since m^{γ} is irreducible in S, it follows immediately that I^* is irreducible in R.

Let $n \in N(m^{\gamma})$ and $r \in I^*$. Suppose $m(s_0nr) \neq 0$. Then there exists $s \in S$ such that $m(s_0nrs) \neq 0$. Then m $(nrs) \neq 0$. Since $n \in N(m^{\gamma})$, $rs \notin m^{\gamma}$. But $m(s_0rs) = m(s_0r)s = 0$, which implies $rs \in (ms_0)^{\gamma} = m^{\gamma}$, a contradiction. Therefore $N(m^{\gamma}) \subseteq N(I^*)$. Also $(S \cap J^*) \cap N(m^{\gamma}) \supset m^{\gamma}$. If $t \in S \cap J^* \cap N(m^{\gamma})$, $t \notin m^{\gamma}$, then $ms_0t \neq 0$. Hence $t \notin I^*$, but $t \in J^* \cap N(I^*)$. Thus $J^* \cap N(I^*) \supset I^*$.

Now let $J^*\supset I^*$ and let $r\in R$ such that $rJ^*\subseteq I^*$. If $r\notin I^*$, then $m(s_0r)\neq 0$. Since $J^*\cap S\supset m^\gamma$, we cannot have $[m(s_0r)]^\gamma\supseteq J^*\cap S$. Hence there exists $j\in J^*\cap S$ such that $m(s_0rj)\neq 0$. Then $rj\notin I^*$, a contradiction. Hence $r\in I^*$.

Again suppose $J^*\supset I^*$ and $r\in R$ such that $[J^*:r]\supseteq I^*$. We show $[J^*:r]\supset I^*$. Suppose $[J^*:r]=I^*$. Let $J=J^*\cap S\supset m^\gamma$. Assume first that $[m(s_0r)]^\gamma=m^\gamma$. Then $m(s_0rJ)\neq (0)$. Hence $rJ\nsubseteq (ms_0)^\gamma=m^\gamma$, and $rJ+m^\gamma\supset m^\gamma$. Then there exists $n\in (rJ+m^\gamma)\cap J$, $n\notin m^\gamma$. We can choose $n=rj, j\in J$. If $s\in m^\gamma$ then $s\in [m(s_0r)]^\gamma$, and $m(s_0rs)=0$. Then $rs\in (ms_0)^\gamma=m^\gamma$. Hence $r\in (m^\gamma)\subseteq m^\gamma$. Since $rj\notin m^\gamma$, $j\notin m^\gamma$. But $j\in [J^*:r]$. Hence $[J^*:r]\supset I^*$. Now assume that $[m(s_0r)]^\gamma\neq m^\gamma$, then $[m(s_0r)]^\gamma\subseteq m^\gamma$, so there exists $a\in S$ such that $ms_0ra=0$ but $ma\neq 0$. Then $ra\in I^*\subseteq J^*$ implies $a\in [J^*:r]$. But $a\notin m^\gamma=(ms_0)^\gamma$ so $a\notin I^*$. Thus $[J^*:r]\supset I^*$.

It follows that I^* is almost maximal in R. Since $a \in I^*$, it follows from Theorem 2.3 that $a \in W(R)$. Therefore $W(R) \cap S \subseteq W(S)$.

THEOREM 2.7. If R is a ring and n is a positive integer, then $W(R_n) = W(R)_n$.

PROOF. $W(R_n) \subseteq W(R)_n$. Let $\alpha = (a_{ij}) \in R_n$, $\alpha \notin W(R)_n$. Assume $a_{ki} \notin W(R)$. By Theorem 2.3 there is an almost maximal right ideal I of R such that $a_{ki} \notin I$. Let $I^* = \{(b_{ij}) \in R_n : b_{kj} \in I, \ 1 \le j \le n\}$. We show that I^* is an almost maximal right ideal of R_n . Since $\alpha \notin I^*$ it will follow by 2.3 that $\alpha \notin W(R_n)$. For simplicity of notation we give the proof for k=1.

Assume J^* is a right ideal of R_n and $J^* \supset I^*$. Let $\beta = (b_{ij}) \in J^*$,

 $\beta \in I^*$. Suppose $b_{1s} \in I$. Then there exists $b \in R$ such that $b_{1s}b \in N(I)$, $b_{1s}b \in I$. Let $\gamma = (c_{ij})$, where $c_{s1} = b$ and $c_{ij} = 0$, $i \neq s$ or $j \neq 1$. Then $\beta \gamma = \rho = (r_{ij})$, where $r_{11} = b_{1s}b$ and $r_{1j} = 0$, j > 1, $\rho \in N(I^*)$, $\rho \in I^*$. Hence $J^* \cap N(I^*) \supset I^*$. It is now clear that if J_1^* and J_2^* are right ideals of R_n and $J_1^* \supset I^*$, $J_2^* \supset I^*$, then $J_1^* \cap J_2^* \supset I^*$.

Again assume that $J^*\supset I^*$ and let $\beta=(b_{ij})\in R_n$, $\beta\in I^*$. We show $\beta J^* \subseteq I^*$. Assume $b_{1s}\in I$. Clearly, if s>1. then $\beta J^*\subseteq I^*$. Suppose s=1. Let $J=\{r\in R:$ there exists $(c_{ij})\in J^*$ with $c_{11}=r\}$. Then $J\supset I$. So there exists $r\in J$ such that $b_{11}r\in I$. Choose $\gamma=(c_{ij})\in J^*$ such that $c_{11}=r$, $c_{ij}=0$ for i>1. Then $\beta\gamma\in I^*$.

Let $J^*\supset I^*$ and suppose $\beta=(b_{ij})\in R_n$ such that $\beta I^*\subseteq J^*$. If $b_{11}\in I$, let $\gamma=(c_{ij})\in R_n$, $\gamma\in I^*$, such that $c_{ij}=0$ for i>1. Then $\beta\gamma\in I^*\subset J^*$ implies $[J^*:\beta]\supset I^*$. Suppose $b_{11}\in I$. Let $J=\{r\in R:$ there exists $(c_{ij})\in J^*$ with $c_{11}=r$, $c_{ij}=0$ for $j>1\}$. J is a right ideal of R and $J\supset I$, where the inclusion is proper because, as shown above, there is an element $(r_{ij})\in J^*\cap N(I^*)$, $(r_{ij})\in I^*$, such that $r_{ij}=0$ for j>1. Also $b_{11}I\subseteq J$. Hence $[J:b_{11}]\supset I$, because I is almost maximal. Let $c\in [J:b_{11}]$, $c\in I$. Choose $\gamma=(c_{ij})\in R_n$ such that $c_{11}=c$, $c_{ij}=0$ for $i\ne 1$ or $j\ne 1$. Then $\beta\gamma\in J^*$ but $\gamma\in I^*$. Hence again $[J^*:\beta]\supset I^*$. It now follows that I^* is an almost maximal right ideal of R_n

 $W(R)_n \subseteq W(R_n)$. It is sufficient to show that any matrix in $W(R)_n$ with only one nonzero row must be in $W(R_n)$. For ease of notation we give the proof in the case where the nonzero row is the first row. Hence suppose $\alpha = (a_{ij}) \in R_n$, $\alpha \in W(R_n)$, and $a_{ij} = 0$ for i > 1. We show $\alpha \in W(R)_n$.

There is an almost maximal right ideal J^* of R_n such that $\alpha \in J^*$. There exists $\beta = (b_{ij}) \in N(J^*) \cap \alpha R_n$, $\beta \in J^*$. If we show $\beta \in W(R)_n$ it will follow that $\alpha \in W(R)_n$. Let $\gamma = (c_{ij})$ be such that $c_{11} = b_{11}$, $c_{ij} = 0$ for $i \neq 1$ or $j \neq 1$. Then $\gamma \beta = \beta^2$. $\beta^2 \in J^*$ because $N(J^*)/J^*$ is an integral domain. Hence $\gamma \in J^*$.

Let $I^* = \{ \rho \in R_n : \gamma \rho \in J^* \}$. By Lemma 2.2, I^* is an almost maximal right ideal of R_n . If $\rho \in I^*$, then $\gamma \rho \in J^*$. Since $\beta \in N(J^*)$, $\beta \gamma \rho \in J^*$. But $\beta \gamma \rho = \gamma^2 \rho$, hence $\gamma \rho \in I^*$. Thus $\gamma \in N(I^*)$, $\gamma \notin I^*$.

Let $I = \{r \in R : \text{ there exists } (r_{ij}) \in I^* \text{ with } r_{11} = r\}$. Then I is a right ideal of R. Now $b_{11} \notin I$; for suppose $\rho = (r_{ij}) \in I^* \text{ with } r_{11} = b_{11}$. We can assume $r_{ij} = 0$ for i > 1. Then $\gamma^2 = \rho \gamma \in I^*$, which is impossible because $\gamma \in N(I^*)$, $\gamma \notin I^*$. We now show that I is an almost maximal right ideal of R, from which it will follow that $b_{11} \notin W(R)$, and the theorem will be proved.

Suppose J is a right ideal of R and $J \supset I$. Let $r \in J$, $r \notin I$. Define $\rho = (r_{ij})$ with $r_{11} = r$, $r_{ij} = 0$ for $i \neq 1$ or $j \neq 1$. Then $\rho \notin I^*$. Hence there exists $\tau = (t_{ij}) \in R_n$ such that $\rho \tau \in N(I^*)$ but $\rho \tau \notin I^*$. Then $rt_{11} \in N(I)$.

But $rt_{11} \in I$. For suppose $\mu = (m_{ij}) \in I^*$ with $m_{11} = rt_{11}$. Again we can suppose $m_{ij} = 0$ for i > 1. Then $\rho \tau \gamma = \mu \gamma$, which is a contradiction because $\rho \tau \gamma \in I^*$ while $\mu \gamma \in I^*$. Thus $rt_{11} \in J \cap N(I)$, $rt_{11} \notin I$, and $J \cap N(I) \supset I$.

We show now that $I^* = \{(r_{ij}): r_{1j} \in I, 1 \leq j \leq n\}$. Suppose $\rho = (r_{ij}) \in I^*$. Then clearly $r_{1j}r \in I$ for each $r \in R$, $1 \leq j \leq n$. But this implies, by the above argument, that $r_{1j} \in I$. Conversely, suppose $r_{1j} \in I$, $1 \leq j \leq n$. If $\rho = (r_{ij}) \in I^*$, then there exists $\tau \in R_n$ such that $\rho \tau \in N(I^*)$, $\rho \tau \in I^*$. Let $\rho \tau = \sigma = (s_{ij})$. Again we may assume $s_{ij} = 0$ for i > 1. By the argument above, $s_{1i} \in I$, a contradiction.

Assume J_1 and J_2 are right ideals of R and $J_1 \supset I$, $J_2 \supset I$. Let $J_k^* = \{(r_{ij}): r_{1j} \in J_k, 1 \le j \le n\}, k=1, 2$. Then J_1^* and J_2^* are right ideals of R_n and $J_k^* \supset I^*$, k=1, 2. Hence $J_1^* \cap J_2^* \supset I^*$, from which it follows easily that $J_1 \cap J_2 \supset I$.

Also, if $J \supset I$ and $r \in R$ such that $rI \subseteq J$, let $\sigma = (s_{ij})$ with $s_{11} = r$, and $s_{ij} = 0$ for $i \neq 1, j \neq 1$. Let $J^* = \{(r_{ij}) : r_{1j} \in J, 1 \leq j \leq n\}$. Then $\sigma I^* \subseteq J^*$. Hence $[J^*:\sigma] \supset I^*$, which clearly implies $[J:r] \supset I$. The theorem is proved.

REFERENCES

- 1. N. Jacobson, Structure of rings, Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.
- 2. K. Koh and A. C. Mewborn, A class of prime rings, Canad. Math. Bull. (1) 9 (1966), 63-72.

North Carolina State University at Raleigh and The University of North Carolina at Chapel Hill