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1. Introduction. In [2] a weakly transitive ring of linear transforma-

tions is defined as follows:

Definition A. Let V be a left vector space over a division ring D

and let 7? be a ring of linear transformations of V. Consider V as

right 7?-module. Then 7? is weakly transitive provided there is a right

order K in D and a (K, 7?)-submodule M of V such that M is uniform

as 7?-module, DM= V, and such that if {m,}"_i is a finite 7?-linearly

independent subset of M and if {y»}?=i is a sequence from M, then

there exists rGT?, kEK, k^O, such that mir = kyi, l^tg«.

By a weakly transitive representation of a ring 7? we mean a homo-

morphism of 7? onto a weakly transitive ring.

Definition 1.1. If 7? is a ring the weak radical, W(R), of 7? is the

intersection of the set of all ideals which are kernels of weakly

transitive representations. If 7? has no weakly transitive representa-

tion, then W(R)=R.

Of importance in studying weakly transitive rings is the notion of

an almost maximal right ideal, which is also defined in [2].

Definition B. If 7 is a proper right ideal of a ring 7? then 7 is

almost maximal provided that

(1) if Ji and J2 are right ideals of 7? and Jir\J2 = I, then Ji = I or

J2 = I, i.e. I is irreducible,

(2) if aG7?and [i-.a^DI, then aEI,
(3) if J is a right ideal of 7?, JZ)I, then N(I)r\JDI, where

N(I)= {rG7?:r7C7},and if aG7?such that [/:a]37then [J:a]DI.
It was shown in [2] that if 7 is an almost maximal right ideal of 7?,

then M = R/I is a uniform right 7?-module with centralizer

K = N(I)/I. M has extended centralizer D [see 2, p. 67] in which

K is a right order, and M can be extended to a (D, 7?)-module V such

that DM= V and such that 7? induces a weakly transitive ring of

linear transformations of the D-space V.

In this paper we observe that W(R/W(R)) = (0) and prove that

W(R) is the intersection of the set of almost maximal right ideals

of 7?. From the fact that a (two-sided) ideal of a weakly transitive

ring is also weakly transitive we deduce that if S is an ideal of 7?

then W(S) = W(R)r\S. Finally, if n is a positive integer then

W(Rn) = W(R)n.
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1 By [/: a], we mean the set {r£.R: ar £/}.
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It is interesting to note that in severel instances the usual proofs

of the analogues of our theorems in the Jacobson structure theory

(See, for example, [l, p. 10]) make very strong use of the notion of

quasi-regularity. Since in the weak radical theory we have no analogue

of this notion the proofs which we give suggest proofs of the classical

theorems which do not depend on quasi-regularity. The authors have

been unable to devise a proof of the equality of the left and right

radicals without using quasi-regularity and this problem for the weak

radical remains open.

From the definition of W(R) it follows that if W(R) = (0), then

R is a subdirect sum of weakly transitive rings. It is likely that this

hypothesis of "weak semisimplicity" will serve in many cases where

a ring is assumed to be semisimple.

2. The proof of the following theorem is straightforward and will

be omitted.

Theorem 2.1. If R is a ring then W(R/W(R)) = (0).

Lemma 2.2. If I is an almost maximal right ideal of a ring R and

M = R/I, then for each mEM,m^0, the right ideal my = {rER: mr = 0\

is almost maximal.

Proof. mR is a submodule of 717 and hence is uniform. Since

mR=R/my, my is an irreducible right ideal. Suppose aER and

[my:a] = (ma)yZ)my. By Lemma 3.5 of [2] it follows that wa = 0;

i.e. aErri*.
Now suppose 7 is a right ideal of R and /Dwr. mJ^(0), so there

exists jE J with mjp^O. It follows directly from the proof of Theorem

3.7 of [2] that there exists bER such that (mjb)y = my (in the termi-

nology of [2] mjb and m are TMinearly dependent and mjb^O).

Then jbE JC\N(mi) and jb^my. Hence jr\N(my)Z)my.

Again assume J3m7, and let rER such that [J:r]3«T. We show

[J:r]Z)my. First suppose (mr)y = my. Then mj^(0) and rJ+myZ)my.

Let nE(rJ-\-rny)r\J, nEmy- We can choose n = rj, jEJ- Then nEJ

implies jE[J'r]. Also rj = nEmy implies jE(mr)y = my. Hence

[J'.r]'Z)my. Now suppose (mr)y^my. Again by Lemma 3.5 of [2]

there exists aER such that mra = 0 and ma^O. Then aE[my:r]

Q[J:r] but aEmy. Hence [J:r]^)my.

The lemma is proved.

Theorem 2.3. If W(R)^R, then W(R) is the intersection of the set

of almost maximal right ideals of R.

Proof. Let 7 be an almost maximal right ideal and let K be the
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kernel of the associated weakly transitive representation of 7?, i.e.

K= {rER'-RrQl}. If nEN(I), nEI, then [l:n]=I. It follows that
TfCZ [l:n] =1. Therefore W(R) is contained in the intersection of the

set of almost maximal right ideals.

Conversely, if r is in the given intersection, then for any almost

maximal right ideal I we have rGnjm^mEi?//} by the lemma.

This implies that r is in the kernel of each representation associated

with an almost maximal right ideal. Hence rEW(R). The theorem

is proved.

Theorem 2.4. If R is a ring and d> is a homomorphism of R, then

W(R)4>CZW(R(p).

Proof. Suppose ^ is a weakly transitive representation of R(p.

Then d>\p is a weakly transitive representation of 7?. Hence

W(R)(j>QKer xp.

Theorem 2.5. Suppose R is a weakly transitive ring of linear trans-

formations and J is a (two-sided) ideal of R. Then J is also weakly

transitive.

Proof. Suppose 7? acts in the (left) vector space V over a division

ring D. Let K and M be as given in Definition A. Clearly M is a

(K, J)-submodule of V and M is uniform as /-module. Suppose

{ot,}"_i is a finite D-linearly independent subset of M and {y,}?_i

is a sequence from M. Let aEJ, a5^0, and let mEM such that

ma9^0. There exist {ry}7_i in 7? and {fe,}"_i in k, kj^O, such that

w,ry = 0, J9^i and «?<?■,• = ^m. Let 7 be an almost maximal right ideal

such that A7 = 7?/7. Since w<r,a = fe;wa;^0, each i, there exist

{siJT-i in R> s&I such that w,-r,- aSi = k[mi, where k\EK, k'^O,

l^i^n. Now {k'tmi}"=1 is a 7)-linearly independent subset of M.

Hence there exists r'ER, kEK, k^O, such that k'tmir' = kyt,l ^i^n.

Let r = 22?-irtasir'. Then rEI and mtr = kyi, l^i^n. Therefore J is

weakly transitive.

Theorem 2.6. If R is a ring and S is a two-sided ideal of R, then

W(S) = W(R)C\S.

Proof. Let 5^(0). Suppose aES, aEW(R). Let ^ be a weakly

transitive representation of R such that (p(a)^0. 0(7?) is a weakly

transitive ring and (p(S) is a nonzero two-sided ideal of (p(R). By

Theorem 2.5, (p(S) is a weakly transitive ring. Hence a(£W(S).

Therefore W(S)C:W(R)r\S.
Conversely, suppose aES, aEW(S). Let 7 be an almost maximal

right  ideal  of  5 such   that  SaQI.   Let  M = S/I and  let mEM
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such that ma^O. There exists s0ES such that my= {sES:ms = 0}

= {sES:msos = 0} =(mso)y. Then msoa^O. Let 7*= {rER'-m(s0r)

= 0|. 7* is clearly closed under addition. Suppose rEI*, tER- If

rt E I* then m(sort)^0. Hence there exists5ESsuch that 0^m(sort)s

= m(sor)(ts), which is absurd. Thus 7* is a right ideal of R. We show

that 7* is almost maximal in R.

Let 7* be a right ideal of R such that 7*1)7*. Let jEJ*, Ml*.
Then m(s0j)^0. Hence there exists sES such that m(s0js) 9^0.Then

jsESr\J*,jsEI*- Thus Sr\J*DSr\I* = my. Since my is irreducible
in S, it follows immediately that 7* is irreducible in R.

Let nEN(my) and rEI*. Suppose m(sonr)^0. Then there exists

sG-5 such that m(s0nrs)^0. Then m (nrs)^0. Since nEN(my),

rs^my. But m(sars) =m(s0r)s = 0, which implies rsE(mso)y = my, a

contradiction. Therefore N(my)QN(I*). Also (Snj*)r\N(my)Dmy.

If tESr\J*r\N(my), tEmy, then ms0t^0. Hence *£T*, but
tEJ*r\N(I*). Thus 7*PiA(7*)D7*.

Now let 7*37* and let rGT? such that rJ*QI*. If r E I*, then
m(s0r)9£0. Since 7*n5Z)W1', we cannot have [m(s0r)]y^)J*r\S.

Hence there exists jEJ*C\S such that m(sorj)^0. Then rj E T*, a

contradiction. Hence rEI*.

Again suppose 7*Z)7* and rER such that [7*:r]DJ*, We show

[7*:r]2>7*. Suppose [7*:r]=7*. Let J=J*C\SZ)my. Assume first

that [m(sor)]y = my. Then m(s0rJ)^(0). Hence rJ%(mso)yz=my, and

rZ+fflOW. Then there exists nE(rJ+my)C\J, nEmy. We can

choose n = rj,jE7. If j£«' then sE [tn(sor)]y, and mfco?^) =0. Then

rsE(mso)y = my.Kencer(my)C.my.S'mcerjEm'r<J^.nty.ButjE [J*:r].

Hence [7*:r]D7*. Now assume that \m(sor)\y9^my, then

[m(svr)]y Cj: 7»t) so there exists aES such that ms0ra = 0 but ma^O.

Then raG7*C7* implies aG[7*:r]. But a£«^ = (ms0)i' so a(£7*.
Thus [7*:r]D7*.

It follows that 7* is almost maximal in R. Since aG7*, it follows

from Theorem 2.3 that aEW(R). Therefore W(R)C\SCW(S).

Theorem 2.7. If R is a ring and n is a positive integer, then

W(Rn) = W(R)n.

Proof. W(Rn)QW(R)n. Let a = (aij)ERn, aEW(R)n. Assume

akiEW(R). By Theorem 2.3 there is an almost maximal right ideal

7 of R such that aklEE Let 7*= {(0,7)GT?„:&*yG7, l^j^n}. We
show that 7* is an almost maximal right ideal of R„. Since aEI* it

will follow by 2.3 that <xEW(Rn). For simplicity of notation we give

the proof for k=l.

Assume 7* is a right ideal of R„ and 7*D7*. Let P=(b{j)EJ*,
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BE?*- Suppose bi,EI- Then there exists bER such that bubEN(I),

bubEI- Let 7 = (c»y), where csi = b and Cij = 0, i^s or jVl. Then

8y=p=(rij), where ru = bub and n, = 0, j>l, pEN(I*), pEI*-

Hence J*n7V(7*)D7*. It is now clear that if J? and 7* are right

ideals of Rn and J*D7*, 7*D7*, then J*r\J*0>I*.
Again assume that 7*1)7* and let 8=(bij)ERn, 8EI*- We show

8J*QI*. Assume buEI- Clearly, if s>l. then j8/*£7*. Suppose 5=1.

Let J={rER' there exists (c,j)G7* with cn = r}. Then /Z)7. So

there exists rEJ such that bnrEL Choose y = (cij)EJ* such that

cn = r, Cij= 0 for i>l. Then 8y(£.I*.

Let J*DI* and suppose 8 = (b{j)ERn such that ,37*C/*. If 6UG7,
let 7=(ctJ)Gi?n, yEI*, such that c,y = 0 for i>l. Then 8yEI*CJ*
implies [J*:/3]l)7*. Suppose buEI- Let J= {rGT?: there exists

(ci,)EJ* with Cn = r, c,y = 0 for j>l}. / is a right ideal of 7? and

JZ)I, where the inclusion is proper because, as shown above, there is

an element (rij)EJ*^N(I*), (r,y)G^*, such that rfy = 0 for j>l.

Also bnlCJ. Hence [J'.bn]^!, because 7 is almost maximal. Let

cE[l'bn], cEI- Choose 7 = (cy)G-Rn such that cu = c, c,y = 0 for^Vl

orjVl. Then ByEJ* but yEI*- Hence again [J*:B]Z)I*. It now

follows that 7* is an almost maximal right ideal of Rn

W(R)nQW(Rn). It is sufficient to show that any matrix in WiR)n

with only one nonzero row must be in WiR„). For ease of notation

we give the proof in the case where the nonzero row is the first row.

Hence suppose a= (a,y)G7?n, ctEWiRn), and a,-y = 0 for i>\. We

show«GfF(7?)n.
There is an almost maximal right ideal J* of Rn such that a$J*.

There exists 8= (bij)EN(J*)r\aRn, 8QJ*- U we show 8^W(R)n it

will follow that a$W(i?)». Let 7=(e,y) be such that cn = bn, c,y = 0

for i^ 1 or jV 1. Then 7/3 =,82. /32G7* because Nil*)/I* is an integral

domain. Hence 7G^*-

Let 7*= {pERn'ypEJ*}■ By Lemma 2.2, 7* is an almost maximal

right ideal of 7?„. If pG7*, then 7PG/*. Since BENiJ*), BypEJ*.
But Byp=y2p, hence 7pG7*. Thus yENil*), yEI*-

Let 7= {rER: there exists (r~,y)G-f* with rn = r}. Then 7 is a right

ideal of 7?. Now buEI', for suppose p = (r,y)G7* with ru = 6u. We can

assume r,-,- = 0 for *>1. Then y2 = pyEI*, which is impossible because

yENil*), yEI*- We now show that 7 is an almost maximal right

ideal of 7?, from which it will follow that buEWiR), and the theorem

will be proved.
Suppose J is a right ideal of 7? and JZ)I- Let rEJ, rEI- Define

p=(r,y) with rn = r, r,y = 0 for i^l or jVl. Then pEI*- Hence there

existsV=0,J)G7?„ such that prGAr(7*) butprG^*- Then rtnENil).
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But rtiiEI- For suppose fi=(«i,)G/* with mu = rtn. Again we can

suppose mij — Q fori > 1. Then pTj = py, which is a contradiction be-

cause PT7GT* while pyEI*- Thus rtnEJC^N(I), rtnEI, and

jnN(I)DI.
We show now that 7*={(rtJ): rijEI, l^i^w}. Suppose

P — (rij)EI*. Then clearly rifEI for each rER, f^j^n. But this

implies, by the above argument, that riyG7. Conversely, suppose

rijEI, f^j^n. If p= (r.-j)GT*, then there exists rERn such that

prEN(I*), prEI*- Let pr = a=(sij). Again we may assume si3 = 0 for

*>1. By the argument above, SuEI, a contradiction.

Assume 7i and 72 are right ideals of R and 707, 707. Let

7*={(r,y): rijEJk, ltHj^n}, k = l, 2. Then 7f and 7* are right

ideals of i?n and 7*37*, k = l, 2. Hence 7*n7*D7*, from which it

follows easily that Jir\J2Z)I.

Also, if 7D7 and rER such that rlQJ, let cr= (5,7) with su = r, and

5,7 = 0 for i ̂  1, jV 1. Let 7* = {(r<,): r,,G 7, 1 gj g w}. Then <r7* C 7*.
Hence [7*:<r]Z)7*, which clearly implies [J:r]Z)I. The theorem is

proved.
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