THE WEAK RADICAL OF A RING
KWANGIL KOH AND A. C. MEWBORN

1. Introduction. In [2] a weakly transitive ring of linear transforma-
tions is defined as follows:

DEFINITION A. Let V be a left vector space over a division ring D
and let R be a ring of linear transformations of V. Consider V as
right R-module. Then R is weakly transitive provided there is a right
order K in D and a (K, R)-submodule M of V such that M is uniform
as R-module, DM =V, and such that if {m;}" is a finite D-linearly
independent subset of M and if {y;}7., is a sequence from M, then
there exists rER, kEK, k70, such that myz=Fky,, 1 <1=<n.

By a weakly transitive representation of a ring R we mean a homo-
morphism of R onto a weakly transitive ring.

DEFINITION 1.1. If R is a ring the weak radical, W(R), of R is the
intersection of the set of all ideals which are kernels of weakly
transitive representations. If R has no weakly transitive representa-
tion, then W(R) =R.

Of importance in studying weakly transitive rings is the notion of
an almost maximal right ideal, which is also defined in [2].

DerFinNiTION B. If I is a proper right ideal of a ring R then I is
almost maximal provided that

(1) if J1 and J; are right ideals of R and Jy"\J.=1, then Jy=1 or
Jo=1, i.e. I is irreducible,

(2) if aER and [I:a]'DI, then ¢ €1,

(3) if J is a right ideal of R, JDI, then N(I)NJDI, where
N(I)={rER:rIC I}, and if aERsuch that [J:a]DI then [J:a]DI.

It was shown in [2] that if I is an almost maximal right ideal of R,
then M=R/I is a uniform right R-module with centralizer
K=N(I)/I. M has extended centralizer D [see 2, p. 67] in which
K is a right order, and M can be extended to a (D, R)-module V such
that DM =7V and such that R induces a weakly transitive ring of
linear transformations of the D-space V.

In this paper we observe that W(R/W(R))=(0) and prove that
W(R) is the intersection of the set of almost maximal right ideals
of R. From the fact that a (two-sided) ideal of a weakly transitive
ring is also weakly transitive we deduce that if .S is an ideal of R
then W(S)=W(R)NS. Finally, if # is a positive integer then
W(Rn) = W(R)a.
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1 By [I: a], we mean the set {rER: ar EI}.
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It is interesting to note that in severel instances the usual proofs
of the analogues of our theorems in the Jacobson structure theory
(See, for example, [1, p. 10]) make very strong use of the notion of
quasi-regularity. Since in the weak radical theory we have no analogue
of this notion the proofs which we give suggest proofs of the classical
theorems which do not depend on quasi-regularity. The authors have
been unable to devise a proof of the equality of the left and right
radicals without using quasi-regularity and this problem for the weak
radical remains open.

From the definition of W(R) it follows that if W(R)=(0), then
R is a subdirect sum of weakly transitive rings. It is likely that this
hypothesis of “weak semisimplicity” will serve in many cases where
a ring is assumed to be semisimple.

2. The proof of the following theorem is straightforward and will
be omitted.

THEOREM 2.1. If R is a ring then W(R/W(R))=(0).

LemMA 2.2. If I is an almost maximal right ideal of a ring R and
M =R/, then for each m& M, m=0, the right ideal m?= {rER: mr=0}
s almost maximal.

Proor. mR is a submodule of M and hence is uniform. Since
mR=R/m", m" is an irreducible right ideal. Suppose ¢ &R and
[m7:a] = (ma)*Dm>. By Lemma 3.5 of [2] it follows that ma=0;
ie.a&m.

Now suppose J is a right ideal of R and JDm". mJ# (0), so there
exists j& J with mj=#0. It follows directly from the proof of Theorem
3.7 of [2] that there exists b& R such that (mjb)*=m" (in the termi-
nology of [2] mjb and m are D-linearly dependent and mjbs<0).
Then jp& JNN(m?) and jb&Em?. Hence JNN (m¥) Dmy.

Again assume JDm?, and let &R such that [J:7]Dm?. We show
[J:#]Dm. First suppose (mr)* =m?. Then mJ (0) and rJ+m*Dm".
Let n€ (J+m")NJ, nEm>. We can choose n=rj, j&J. Then n&J
implies j&€[J:r]. Also rj=n&m” implies j& (mr)*=m>. Hence
[J:7]Dm*. Now suppose (mr)Y=m>. Again by Lemma 3.5 of [2]
there exists a €R such that mra=0 and ma=0. Then a € [mv:7]
C[J:r] but agm". Hence [J:r]Dm.

The lemma is proved.

TuEOREM 2.3. If W(R)#R, then W(R) is the intersection of the set
of almost maximal right ideals of R.

ProoF. Let I be an almost maximal right ideal and let K be the
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kernel of the associated weakly transitive representation of R, i.e.
K= {rER:RrQI}. If nEN(I), n& I, then [I:n]=1I. It follows that
KC [I:n]=1I. Therefore W(R) is contained in the intersection of the
set of almost maximal right ideals.

Conversely, if 7 is in the given intersection, then for any almost
maximal right ideal I we have rEN{m":mER/I} by the lemma.
This implies that 7 is in the kernel of each representation associated
with an almost maximal right ideal. Hence r& W(R). The theorem
is proved.

THEOREM 2.4. If R is a ring and ¢ is a homomorphism of R, then
W(R)¢S W (R¢).

ProOF. Suppose ¢ is a weakly transitive representation of Re¢.
Then ¢¢¥ is a weakly transitive representation of R. Hence
W(R)¢SKer .

THEOREM 2.5. Suppose R is a weakly transitive ring of linear trans-
formations and J is a (two-sided) ideal of R. Then J is also weakly
transitive.

Proo¥F. Suppose R acts in the (left) vector space V over a division
ring D. Let K and M be as given in Definition A. Clearly M is a
(K, J)-submodule of V and M is uniform as J-module. Suppose
{m:}7., is a finite D-linearly independent subset of M and {y;}%,
is a sequence from M. Let ¢€J, a0, and let m&EM such that
ma=0. There exist {r;}%, in R and {k;}%, in &, k;»0, such that
mir;=0, j#1 and mr;=km. Let I be an almost maximal right ideal
such that M =R/I. Since mga=kma>=0, each 1, there exist
{s.-}f_l in R, s;&I such that ma; as;=kjm, where k;EK, k>0,
1<i<n. Now {k/m;}l, is a D-linearly independent subset of M.
Hence there exists ¥ &R, kE K, k#0, such that kymys'=ky,1 <i<n.
Letr= Z?_lr.-as;r'. Then r&J and mir =ky;, 1 <i=<n. Therefore J is
weakly transitive.

THEOREM 2.6. If R is a ring and S is a two-sided ideal of R, then
W(S) =W(R)NS.

Proor. Let S (0). Suppose aES, aEW(R). Let ¢ be a weakly
transitive representation of R such that ¢(a) 0. ¢(R) is a weakly
transitive ring and ¢(S) is a nonzero two-sided ideal of ¢(R). By
Theorem 2.5, ¢(S) is a weakly transitive ring. Hence a€E W(S).
Therefore W(S)C W(R)NS.

Conversely, suppose a&.S, aE W(S). Let I be an almost maximal
right ideal of S such that SaQEI. Let M=S/I and let m&EM
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such that mas0. There exists so&S such that m*= {s€S:ms=0]}
= {sGS:m_sos=0} = (ms,)*. Then mswa=0. Let I*= {rER:m(sor)
=0}. I* is clearly closed under addition. Suppose r&EI*, tcR. If
rt € I'* then m(sort) =0. Hence there exists s€ Ssuch that 05 m(sort)s
=m(sor)(ts), which is absurd. Thus I* is a right ideal of R. We show
that I'* is almost maximal in R.

Let J* be a right ideal of R such that J*DI*. Let j&J*, jEI*.
Then m(sef) #0. Hence there exists s&.S such that m(sejs) #0.Then
FSESNT*, js& I*. Thus SNJ*DSNI*=m". Since m” is irreducible
in S, it follows immediately that I* is irreducible in R.

Let n&€N(m”) and r&I*. Suppose m(sonr)#0. Then there exists
sES such that m(senrs)£0. Then m (nrs)0. Since n&EN(m?),
rséEm. But m(sers) =m(ser)s =0, which implies rs€ (msq)*=m", a
contradiction. Therefore N(m?) CN(I*). Also (SNT*)NN (m*) Dm>.
If t&€SNT*N\N(mv), t&m>, then msit=0. Hence t&I*, but
tEJ*MN(I*). Thus J*NNI*) DI*. i

Now let J*DI* and let »&ER such that rJ*CTI* If r & I*, then
m(sor) #=0. Since J*N\SDm*, we cannot have [m(sor)]¥DJ*NS.
Hence there exists j&J*MS such that m(serf) #0. Then »j & I*, a
contradiction. Hence r&I*.

Again suppose J*DI* and r&R such that [J*:7]DI* We show
[J*:7r]DI*. Suppose [J*:r]=I* Let J=J*N\SDm". Assume first
that [m(ser)]*=m". Then m(sorJ) % (0). Hence rJGE (mso)* =m?, and
rJ4+m*Dm?. Then there exists n& (rJ+m")NJ, nEmr. We can
choose n=rj, jEJ. If s€m~ then s& [m(sor)]7, and m(sors) =0. Then
rs€ (mso)” =m?. Hencer(m*) Cm*.Since rj & m?, jéEm>. But j& [T*:7].
Hence [J*:r]DI*. Now assume that [m(se)]*s¢m, then
[m(ser)]* & m7, so there exists a &S such that msora =0 but ma=0.
Then ra € I*CJ* implies a € [J*:7]. But adEm?= (mso)” so adI*.
Thus [J*:r]DI*.

It follows that I'* is almost maximal in R. Since a&-I*, it follows
from Theorem 2.3 that aE W(R). Therefore W(R)YNSC W(S).

THEOREM 2.7. If R is a ring and mn is a positive integer, then
W(Rs) = W(R)s.

PrOOF. W(R,)SW(R)a. Let a=(aij)ER,, aEW(R),. Assume
aiE W(R). By Theorem 2.3 there is an almost maximal right ideal
I of R such that ax&1. Let I*={ (b)) ER.: b1 E, 1§j§n}. We
show that I* is an almost maximal right ideal of R,. Since a & I* it
will follow by 2.3 that a & W(R,). For simplicity of notation we give
the proof for k=1.

Assume J* is a right ideal of R, and J*DI*. Let 8= (b.)EJ*,
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B I*. Suppose by, & I. Then there exists b& R such that bi,bEN(I),
bib&I. Let ¥=(ci;), where ¢ca=b and ¢;;=0, 25%5s or j#*1. Then
By=p=(ri;), where ru=bi,b and r;=0, j>1, pENI*), p&EI*.
Hence J*N\N(I*)DI*. It is now clear that if J} and J; are right
ideals of R, and JFDI*, JyDI*, then JiNJFDI*.

Again assume that J*DI* and let 8= (b;;) ER,, BEI*. We show
© BJ*QI*. Assume by, & 1. Clearly, if s> 1. then 8J*Q I*. Suppose s =1.
Let J={rER: there exists (c;)EJ* with cu=r}. Then JDI. So
there exists »&J such that byr@ 1. Choose v = (c;;) ©J* such that
cu=r, ¢;;=0 for >1. Then By I*.

Let J*DI* and suppose 8= (b;;) ER, such that BI*C J* If buE1J,
let ¥ = (ci;) ER,, vy I*, such that ¢;;=0 for 4>1. Then By&I*CJ*
implies [J*:8]DI*. Suppose buEl. Let J={rER: there exists
(ci;) ET* with en=r, ¢;;=0 for j>1}. J is a right ideal of R and
JDI, where the inclusion is proper because, as shown above, there is
an element (r;;) & J*MNN(I*), (ry;)&EI*, such that ;=0 for j>1.
Also byICJ. Hence [J:bu]DI, because I is almost maximal. Let
¢E [J:bu], ¢& 1. Choose v = (c;;) ER, such that cu=c, ¢;;=0 for i1
or j#1. Then By&EJ* but y&I*. Hence again [J*:8] DI*. It now
follows that I'* is an almost maximal right ideal of R,

W(R),CW(R,). It is sufficient to show that any matrix in W(R),
with only one nonzero row must be in W(R,). For ease of notation
we give the proof in the case where the nonzero row is the first row.
Hence suppose a=(a:;) ER,, aFW(R,), and a;;=0 for :>1. We
show a & W(R),.

There is an almost maximal right ideal J* of R, such that a& J*.
There exists 8= (b:;) EN(J*)NaR,, BET*. If we show BEW(R), it
will follow that a& W(R),. Let v=(ci;) be such that ¢;1=0bu, ¢;;=0
for i1 or j# 1. Then y8 =32 B2& J* because N(J*)/J* is an integral
domain. Hence vy & J*.

Let [*= {pER,.I'ypEJ*}. By Lemma 2.2, I* is an almost maximal
right ideal of R,. If p&I*, then yp&J*. Since BEN(J*), BypEJ*.
But Byp=7?%, hence yp&I*. Thus yEN(I*), y&EI*

Let I = {r&R: there exists (7;;) €I* with ry=r}. Then I is a right
ideal of R. Now bu&1I; for suppose p= (r;;) EI* with 713 =0by1. We can
assume r;;=0 for > 1. Then v*=py& I'*, which is impossible because
YENI*), y&EI*. We now show that I is an almost maximal right
ideal of R, from which it will follow that by €€ W(R), and the theorem
will be proved.

Suppose J is a right ideal of R and JDI. Let r&J, & 1. Define
p=(rs) with ru=r, r;;=0 for 21 or j#1. Then p&I* Hence there
exists 7= (t;;) € R, such that pr&EN(I*) but pr&I*. Then rin&EN(J).
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But rtn € 1. For suppose u= (m;;) ©I* with my=riy. Again we can
suppose m;;=0 forz > 1. Then pry=uy, which is a contradiction be-
cause pry&I* while yy€rl*. Thus rtnEJNNI), riy&I, and
JNN(I)DI.

We show now that I*={(ry;): n;EI, 1<j<n}. Suppose
p=(ry;)EI* Then clearly rny&I for each rER, 1<j<n. But this
implies, by the above argument, that r;;&I. Conversely, suppose
r; 1, 1=<j=<n. If p=(r;;)&I*, then there exists TER, such that
pTEN(I*), pr&I*. Let pr=0=(s;;). Again we may assume s;;=0 for
1>1. By the argument above, s 1, a contradiction.

Assume J; and J, are right ideals of R and /11, J:DI. Let
Ji={(ry): nij€Ji, 1=j=<n}, k=1, 2. Then Jf and Jj are right
ideals of R, and Jf DI*, k=1, 2. Hence JiNJF DI*, from which it
follows easily that JiNJ,DI.

Also, if JDI and r&R such that rIC J, let = (s;;) with sy =7, and
si=0for i1, j=1. Let J*={(r;;): 7;€J, 1 <j<n}. Then ¢ I*C J*.
Hence [J*:0]DI*, which clearly implies |J:r]DI. The theorem is
proved.
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