GROTHENDIECK GROUPS AND DIVISOR GROUPS1

ROBERT M. FOSSUM

0. Introduction. Before stating the results in this note, it is necessary to introduce some notation. A is a noetherian integral domain which is integrally closed in its quotient field K. Σ is a central simple finite-dimensional K-algebra, D is a central division K-algebra and V is a finitely generated right D vector space such that $\Sigma = \operatorname{Hom}_{\mathcal{D}}(V, V)$ (so also $D = \operatorname{Hom}_{\Sigma}(V, V)$).

Let Λ be an A-order in Σ . $\mathfrak{M}(\Lambda)$ denotes the category of left finitely generated Λ -modules, $\mathfrak{I}(\Lambda)$ the Serre subcategory of $\mathfrak{M}(\Lambda)$ consisting of A-torsion left Λ -modules. $\mathfrak{O}(\Lambda)$ is the Serre subcategory of $\mathfrak{I}(\Lambda)$ consisting of the *pseudo-nul* left Λ -modules, where a pseudo-nul module M is one for which $M_{\mathfrak{p}} = A_{\mathfrak{p}} \otimes_A M = 0$ for all prime ideals \mathfrak{p} of A of height at most one. The category $\mathfrak{M}/\mathfrak{O}(\Lambda)$ is formed by taking as objects the objects of $\mathfrak{M}(\Lambda)$ and for M, N in $\mathfrak{M}(\Lambda)$, defining $\operatorname{Hom}_{\mathfrak{M}/\mathfrak{O}}(M, N)$ to be the direct limit of $\operatorname{Hom}_{\mathfrak{M}}(M', N')$ taken over those M' and N' such that M/M' is in \mathfrak{O} and N' = N/N'' with N'' in \mathfrak{O} . $\mathfrak{I}/\mathfrak{O}(\Lambda)$ is formed in a similar fashion. The first result may now be stated as follows:

THEOREM 1. Let A, Σ , D be as above. Let Λ_1 and Λ_2 be maximal orders in Σ , and Γ a maximal order in D. Then there are functors

$$F(\Lambda_1, \Lambda_2): \mathfrak{M}(\Lambda_1) \to \mathfrak{M}(\Lambda_2),$$

 $G(\Lambda_2, \Gamma): \mathfrak{M}(\Lambda_2) \to \mathfrak{M}(\Gamma),$

which induce isomorphisms of the categories

$$\mathfrak{M}/\mathfrak{O}(\Lambda_1) \to \mathfrak{M}/\mathfrak{O}(\Lambda_2) \to \mathfrak{M}/\mathfrak{O}(\Gamma),$$

 $\mathfrak{I}/\mathfrak{O}(\Lambda_1) \to \mathfrak{I}/\mathfrak{O}(\Lambda_2) \to \mathfrak{I}/\mathfrak{O}(\Gamma).$

If $\mathfrak E$ is an abelian category, $K^0(\mathfrak E)$ denotes the Grothendieck group of $\mathfrak E$. It can be defined as follows: For each C in $\mathfrak E$ there is an f(C) in $K^0(\mathfrak E)$, an abelian group, such that if $0 \to C' \to C \to C'' \to 0$ is an exact sequence in $\mathfrak E$, then f(C) = f(C') + f(C''). Furthermore, if G is any abelian group and for each $\mathfrak E$ in C there is a g(C) in G such that g(C) = g(C') + g(C'') on exact sequences in $\mathfrak E$ then there is a unique homomorphism $h: K^0(\mathfrak E) \to G$ such that g = hf. Let $G_t(\Lambda) = K^0(\mathfrak I)/\mathfrak P(\Lambda)$ and $G(\Lambda) = K^0(\mathfrak M)/\mathfrak P(\Lambda)$. An immediate corollary

Received by the editors March 5, 1966 and, in revised form, July 11, 1966.

¹ This research was partially supported by the National Science Foundation NSF GP 5478.

to Theorem 1 is

COROLLARY. The functors F and G induce isomorphisms

$$G_t(\Lambda_1) \to G_t(\Lambda_2) \to G_t(\Gamma),$$

 $G(\Lambda_1) \to G(\Lambda_2) \to G(\Gamma).$

In case A is a Dedekind domain these results are known, so in a sense Theorem 1 may be considered to be a generalization of the Morita Theorems which give these isomorphisms in this case (see [5]).

If M is an A-lattice in Σ , define $M^{-1} = \{x \in \Sigma : MxM \subseteq M\}$. Let Λ be a maximal order in Σ . Let $I(\Lambda)$ denote the set of A-lattices in Σ which are both left and right A-modules. Goldman in [6] defined $D(\Lambda)$, the group of divisors of Λ , to be the abelian group obtained from $I(\Lambda)$ by the equivalence relation (quasi-equality for two-sided fractionary Λ -ideals).

"
$$M \sim N \text{ in } I(\Lambda) \text{ iff } M^{-1} = N^{-1}$$
."

Thus $D(\Lambda) = I(\Lambda)/\sim$, with multiplication given by $(M, N) \to \overline{M}\overline{N}$. Goldman proves that $D(\Lambda_1)$ is naturally isomorphic to $D(\Lambda_2)$ when Λ_1 and Λ_2 are maximal orders in Σ . The second result of this note is

THEOREM 2. $D(\Lambda)$ is isomorphic to $G_t(\Lambda)$.

Theorem 2 and the corollary to Theorem 1 yield the important, but not surprising, result, namely the

COROLLARY. If Λ is a maximal order in Σ , and Γ a maximal order in D, then $D(\Lambda)$ is (naturally) isomorphic to $D(\Gamma)$.

Thus considerations of $D(\Lambda)$ are reduced to considerations of $D(\Gamma)$, but Γ is in a division algebra.

1. Proof of Theorem 1. The notations of §0 are retained here. Let Λ and Ω be maximal A-orders in Σ . The conductor, $\{x \in \Sigma : \Omega x \subseteq \Lambda\}$, is denoted by $\Lambda : \Omega$. It is an A-lattice in Σ which is a right ideal in Λ and a left Ω -module. Define $F(\Lambda, \Omega) : \mathfrak{M}(\Lambda) \to \mathfrak{M}(\Omega)$ by $F(\Lambda, \Omega)(M) = \Lambda : \Omega \otimes_{\Lambda} M$ for the left Λ -module M. Certainly $F(\Lambda, \Omega)$ is a functor. Since $A_{\mathfrak{p}}$ is a flat A-module for each prime ideal \mathfrak{p} of A, it is clear that $A_{\mathfrak{p}} \otimes_{\Lambda} F(\Lambda, \Omega) = F(\Lambda_{\mathfrak{p}}, \Omega_{\mathfrak{p}})$ for each prime ideal \mathfrak{p} of A. Hence F takes torsion modules to torsion modules, and pseudo-nul modules to pseudo-nul modules, and consequently induces functors

$$F'(\Lambda, \Omega): \mathfrak{M}/\mathfrak{O}(\Lambda) \to \mathfrak{M}/\mathfrak{O}(\Omega),$$

 $F''(\Lambda, \Omega): \mathfrak{I}/\mathfrak{O}(\Lambda) \to \mathfrak{I}/\mathfrak{O}(\Omega).$

(F'' is induced by F'.)

To show that F' (and hence F'') is an isomorphism, it is sufficient to construct a functorial inverse. But, consider the natural transformation

$$F(\Omega, \Lambda)F(\Lambda, \Omega) \to I_{\mathfrak{M}(\Lambda)}$$

given by $(\Omega: \Lambda) \otimes_{\Omega} (\Lambda: \Omega) \otimes_{\Lambda} M \rightarrow M: \omega \otimes \lambda \otimes m \rightarrow \omega \lambda m$. Upon localizing at a height one or less prime ideal of A, one obtains an identification; that is, $F(\Omega_{\mathfrak{p}}, \Lambda_{\mathfrak{p}}) F(\Lambda_{\mathfrak{p}}, \Omega_{\mathfrak{p}}) = I$. For in case $\mathfrak{p} = 0$, $\Omega_{\mathfrak{p}} = \Sigma = \Lambda_{\mathfrak{p}}$, and in the other cases, $A_{\mathfrak{p}}$ is a discrete rank-one valuation ring, so $\Lambda_{\mathfrak{p}}: \Omega_{\mathfrak{p}} = u\Lambda_{\mathfrak{p}} = \Omega_{\mathfrak{p}}u$ and $\Omega_{\mathfrak{p}}: \Lambda_{\mathfrak{p}} = u^{-1}\Omega_{\mathfrak{p}} = \Lambda_{\mathfrak{p}}u^{-1}$, where u is a unit in Σ (by 3.4 of [1]). Hence F' (and so F'') is an isomorphism.

Using the same arguments, one shows that $F'(\Lambda, \Omega)F'(\Omega, \Omega') = F'(\Lambda, \Omega')$ for maximal A-orders in Σ . This says that the isomorphisms are natural.

Before proving the second part of Theorem 1, a generalization of Proposition 4.2 of [1] is needed.

The proof is exactly as in [1]. Proposition 4.1 of [1] and its proof remain valid when Hom is replaced by $\operatorname{Hom}_{\Gamma}$ and \otimes by \otimes_{Γ} , so it can be used as in the proof of [1, Proposition 4.2].

PROPOSITION 1. Let A be a noetherian integrally closed integral domain with quotient field K. Let Σ be a finite-dimensional central simple K-algebra. Suppose $\Sigma = \operatorname{Hom}_D(V, V)$ where D is a central division K-algebra and V a finite-dimensional right D-module. An A-order Λ in Σ is maximal if, and only if, there is a maximal A-order Γ in D and a right Γ -submodule E of V which is a reflexive A-lattice such that $\Lambda = \operatorname{Hom}_{\Gamma}(E, E)$. In this case $\Gamma = \operatorname{Hom}_{\Lambda}(E, E)$.

Let Λ be a maximal order in Σ and let E and Γ be as in Proposition 1. Define $G(\Lambda, \Gamma) \colon \mathfrak{M}(\Lambda) \to \mathfrak{M}(\Gamma)$ by $G(\Lambda, \Gamma)(M) = \operatorname{Hom}_{\Gamma}(E, \Gamma) \otimes_{\Lambda} M$. The localization arguments used above show that $G(\Lambda, \Gamma)$ preserves torsion and pseudo-nullity, so G induces

$$G'(\Lambda, \Gamma): \mathfrak{M}/\mathcal{O}(\Lambda) \to \mathfrak{M}/\mathcal{O}(\Gamma),$$

 $G''(\Lambda, \Gamma): 5/\mathcal{O}(\Lambda) \to 5/\mathcal{O}(\Gamma).$

There is also the functor $G(\Gamma, \Lambda): \mathfrak{M}(\Gamma) \to \mathfrak{M}(\Lambda)$ defined by $G(\Gamma, \Lambda)(N) = E \otimes_{\Gamma} N$. As before, there are natural transformations

$$G(\Lambda, \Gamma)G(\Gamma, \Lambda) \to I\mathfrak{M}_{(\Gamma)},$$

 $G(\Gamma, \Lambda)G(\Lambda, \Gamma) \to I\mathfrak{M}_{(\Lambda)}.$

The first is given by the natural homomorphism $\operatorname{Hom}_{\Gamma}(E, \Gamma) \otimes_{\Lambda} E \to \operatorname{Hom}_{\Lambda}(E, E) = \Gamma$, the second by $E \otimes_{\Gamma} \operatorname{Hom}_{\Gamma}(E, \Gamma) \to \operatorname{Hom}_{\Gamma}(E, E) = \Lambda$ (cf. [1, Proposition A.4]). Once again, these localize to identifica-

tions so

1967]

$$G'(\Lambda, \Gamma)G'(\Gamma, \Lambda) = I\mathfrak{M}/\mathfrak{O}_{(\Gamma)};$$

 $G'(\Gamma, \Lambda)G'(\Lambda, \Gamma) = I\mathfrak{M}/\mathfrak{O}_{(\Lambda)}.$

This concludes the proof of Theorem 1.

Heller and Reiner in [4], [5] discuss the exact sequences

(HR)
$$K^{1}(\Sigma) \to G_{t}(\Lambda) \to G(\Lambda) \to K^{0}(\Sigma) \to 0,$$
$$K^{1}(D) \to G_{t}(\Gamma) \to G(\Gamma) \to K^{0}(D) \to 0,$$

where A is a Dedekind domain.

The corollary to Theorem 1 generalizes the discussion on pp. 351–352 of [5], i.e. it implies that these are isomorphic sequences for any noetherian integrally closed integral domain A.

Another application of the corollary to Theorem 1 is

PROPOSITION 2. Let A be a noetherian integrally closed integral domain with quotient field K. Let V be a finite-dimensional vector space over K and let $\Sigma = \operatorname{Hom}_K(V, V)$. Let Λ be a maximal order in Σ . Then

$$G_t(\Lambda) = D(A)$$
 (divisor group of A),
 $G(\Lambda) = C(A) \oplus \mathbf{Z}$ ($C(A) = class\ group\ of\ A$).

PROOF. By the corollary to Theorem 1, $G_t(\Lambda) = G_t(A)$ and $G(\Lambda) = G(A)$. By Proposition 11 of [3, §4, n°5], $G_t(A) = D(A)$. By Proposition 17 of [3, §4, n°8], $G(A) = C(A) \oplus \mathbf{Z}$.

REMARK. Theorem 2 is a generalization of this proposition.

2. **Proof of Theorem 2.** The proof of the theorem is exactly the proof of Proposition 11 of [3, §4, n°5] modified to the present situation.

Let Λ be a maximal A-order in Σ . For each prime (two-sided) ideal $\mathfrak P$ of Λ of height one let div $\mathfrak P$ denote its image in $D(\Lambda)$. In [7] it is proved that there is a bijection, given by $\mathfrak P \to \mathfrak P \cap A$, of the set of prime ideals of height one of Λ to the set of prime ideals of height one of A. Let $P(\Lambda)$ denote the set of prime ideals of Λ .

Let $M \in \mathfrak{I}(\Lambda)$. Then if \mathfrak{p} is a prime ideal of A, the $\Lambda_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ has finite length, denoted by $l_{\mathfrak{p}}(M_{\mathfrak{p}})$. Since $M_{\mathfrak{p}}=0$ if $M \in \mathfrak{O}(\Lambda)$, there is induced a map

$$\chi \colon \Im/\mathfrak{G}(\Lambda) \to D(\Lambda)$$

defined by $\chi(M) = \sum l_{\mathfrak{p}}(M_{\mathfrak{p}})$ div \mathfrak{P} , $\mathfrak{p} = \mathfrak{P} \cap A$, $\mathfrak{P} \in P(A)$. The theorem will be proved if it can be shown that $(D(\Lambda), \chi)$ satisfies the universal mapping property defining the Grothendieck group.

For a Λ -module M, let Ass M denote the set of prime (two-sided) ideals \mathfrak{P} of Λ such that there is a nonzero submodule M' of M with $\operatorname{Ann}_{\Lambda} M'' = \mathfrak{P}$ for every nonzero submodule M'' of M' (see [7]).

PROPOSITION 3. Let M be a finitely generated left Λ -module. Then there is a chain of submodules $M = M_0 \supset M_1 \supset \cdots \supset M_r = 0$, $r \ge 0$, such that M_i/M_{i+1} is isomorphic to a module Λ/\mathfrak{N}_i , \mathfrak{N}_i a left ideal of Λ , where $\operatorname{Ass} \Lambda/\mathfrak{N}_i = \{\mathfrak{P}_i\}$ and $\operatorname{Ann}_{\Lambda}(\Lambda/\mathfrak{N}_i) = \mathfrak{P}_i$, \mathfrak{P}_i a prime ideal of Λ .

The proof is the same as for Theorem 1 of [2, §1, n°4] and is omitted.

It is clear that χ is additive on exact sequences, so Proposition 3 shows that

$$\chi(M) = \sum_{i=0}^{r-1} \chi(\Lambda/\mathfrak{N}_i)$$

where the \mathfrak{N}_i are left ideals satisfying the conclusion of Proposition 3. The next proposition permits a study of these modules.

PROPOSITION 4. Let $\mathfrak{P} \subset P(\Lambda)$, $\mathfrak{p} = \mathfrak{P} \cap A$. Let \mathfrak{m} be a minimal left ideal in the simple $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ -algebra $\Lambda_{\mathfrak{p}}/\mathfrak{P}\Lambda_{\mathfrak{p}}$. Let $\mathfrak{m} = \mathfrak{m} \cap (\Lambda/\mathfrak{P})$. Then

- (i) If \mathfrak{N} is a left ideal of Λ such that $\operatorname{Ass} \Lambda/\mathfrak{N} = \{\mathfrak{P}\}$ and $\mathfrak{N} \supseteq \mathfrak{P}$, then the class of Λ/\mathfrak{N} in $G_t(\Lambda)$ is some integral multiple of the class of \mathfrak{n} in $G_t(\Lambda)$.
 - (ii) $\chi(\mathfrak{n}) = \operatorname{div} \mathfrak{P}$.

PROOF. Throughout this proof let $S=\Lambda/\mathfrak{P}$. Let [M] denote the class of M in $G_t(\Lambda)$.

Let \mathfrak{m}_1 and \mathfrak{m}_2 be two minimal left ideals in $S_{\mathfrak{p}}$. Then there is a t in S, t a unit in $S_{\mathfrak{p}}$, such that $\mathfrak{m}_2 = \mathfrak{m}_1 t$. Let $\mathfrak{n}_i = \mathfrak{m}_i \cap S$. Then $\mathfrak{n}_1 t \subseteq \mathfrak{n}_2$, so consider the homomorphism $\mathfrak{n}_1 \rightarrow {}^t\mathfrak{n}_2$. When localized at \mathfrak{p} it is the isomorphism $\mathfrak{m}_1 \rightarrow {}^t\mathfrak{m}_2$. If \mathfrak{q} is a prime ideal of height one of A distinct from \mathfrak{p} , then $(\mathfrak{n}_1)_{\mathfrak{q}} = 0 = (\mathfrak{n}_2)_{\mathfrak{q}}$, so t localized at \mathfrak{q} is also an isomorphism. So in $3/\mathfrak{O}(\Lambda)$ this map is an isomorphism, hence $[\mathfrak{n}_1] = [\mathfrak{n}_2]$.

Suppose that \mathfrak{N} is a left ideal satisfying the hypotheses of condition (i). Then $(\mathfrak{N}/\mathfrak{P})_{\mathfrak{p}}$ is a left ideal in $S_{\mathfrak{p}}$, so is the direct sum of minimal left ideals $\mathfrak{m}_1, \dots, \mathfrak{m}_t$ of $S_{\mathfrak{p}}$. Let $\mathfrak{n}_i = S \cap \mathfrak{m}_i$ and consider $\mathfrak{n}_1 + \dots + \mathfrak{n}_t$ in S. This sum is direct. The homomorphisms $\mathfrak{n}_1 + \dots + \mathfrak{n}_t \to (\mathfrak{N}/\mathfrak{P})_{\mathfrak{p}} \cap S$ and $\mathfrak{N}/\mathfrak{P} \to (\mathfrak{N}/\mathfrak{P})_{\mathfrak{p}} \cap S$ are isomorphisms at every localization. Hence $t[\mathfrak{n}] = [\mathfrak{n}_1 + \dots + \mathfrak{n}_t] = [\mathfrak{N}/\mathfrak{P}]$. This holds when $\mathfrak{N} = \Lambda$, so let $[\Lambda/\mathfrak{P}] = [\mathfrak{n}_1 + \dots + \mathfrak{n}_t] = s[\mathfrak{n}]$ where $s = [(\Lambda/\mathfrak{P})_{\mathfrak{p}}: (A/\mathfrak{p})_{\mathfrak{p}}]$. Then $t \leq s$.

Now consider the exact sequence $0 \rightarrow \Re/\Re \rightarrow \Lambda/\Re \rightarrow \Lambda/\Re \rightarrow 0$. Then

$$[\Lambda/\mathfrak{N}] = [\Lambda/\mathfrak{P}] - [\mathfrak{N}/\mathfrak{P}]$$
$$= s[\mathfrak{n}] - t[\mathfrak{n}]$$
$$= (s - t)[\mathfrak{n}].$$

So (i) has been established. (ii) is clear from the definition of n.

COROLLARY. For each $\mathfrak{P} \in P(\Lambda)$, let $\mathfrak{n}(\mathfrak{P})$ be a module constructed in Proposition 4. Then $G_t(\Lambda)$ is free on the set $[\mathfrak{n}(\mathfrak{P})]$.

This follows immediately from the two previous propositions.

PROPOSITION 5. For each torsion left Λ -module M, let g(M) be an element in an abelian group G. Suppose g satisfies the two conditions a. If $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is an exact sequence in $\Im(\Lambda)$, then g(M) = g(M') + g(M'').

b. If $M \in \mathcal{O}(\Lambda)$, then g(M) = 0.

Then there is a unique homomorphism $\theta: D(\Lambda) \to G$ such that $g = \theta \chi$.

PROOF. Let $\mathfrak{n}(\mathfrak{P})$ be an ideal of Λ/\mathfrak{P} defined in Proposition 4. Let $\theta(\text{div }\mathfrak{P}) = g(\mathfrak{n}(\mathfrak{P}))$. Then continue as in Proposition 11 of [3, §4, \mathfrak{n}° 5]. Propositions 3 and 4 are designed to make that proof work.

Proposition 5 shows that $D(\Lambda)$ satisfies the universal property which defines the Grothendieck group, so it must be isomorphic to it. This completes the proof of Theorem 2.

REMARK. Since $K^0(\Sigma) = K^0(D) = \mathbf{Z}$ in (HR) and \mathbf{Z} is \mathbf{Z} projective, $G^0(\Gamma) = C(\Gamma) \oplus \mathbf{Z}$ where $C(\Gamma)$ is the kernel of $G^0(\Gamma) \to K^0(D)$, and hence is the image of $G^0_i(\Gamma) \to G^0(\Gamma)$. A natural question is: What is an ideal (or module) theoretical description of the subgroup H of $D(\Gamma)$ such that $D(\Gamma)/H = C(\Gamma)$? $C(\Gamma)$ is a generalization of the commutative class group (see [3]). A corollary to the corollary to Theorem 1 is that $C(\Lambda)$ is isomorphic to $C(\Gamma)$ and both do not depend on the maximal orders in question.

BIBLIOGRAPHY

- 1. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc. 97 (1960), 1-24.
 - 2. N. Bourbaki, Algèbre commutative, Chapitre 4, Hermann, Paris, 1961.
 - 3. ——, Algèbre commutative, Chapitre 7, Hermann, Paris, 1965.
- 4. A. Heller and I. Reiner, Grothendieck groups of orders in semisimple algebras, Trans. Amer. Math. Soc. 112 (1964), 344-355.
- 5. ——, Grothendieck groups of integral group rings, Illinois J. Math. 9 (1965), 349-359.
- 6. O. Goldman, Quasi-equality in maximal orders, J. Math. Soc. Japan 13 (1961), 371-376.
 - 7. J. A. Riley, Reflexive ideals in maximal orders, J. Algebra 2 (1965), 451-465.

THE UNIVERSITY OF ILLINOIS