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0. Introduction. Before stating the results in this note, it is neces-

sary to introduce some notation. A is a noetherian integral domain

which is integrally closed in its quotient field K. S is a central simple

finite-dimensional A-algebra, D is a central division A-algebra

and V is a finitely generated right D vector space such that

S = HomD(F, V) (so also D = Horn2(V, V)).

Let A be an ^4-order in S. 9TC(A) denotes the category of left

finitely generated A-modules, 3(A) the Serre subcategory of 9TC(A)

consisting of A -torsion left A-modules. (P(A) is the Serre subcategory

of 3(A) consisting of the pseudo-nul left A-modules, where a pseudo-

nul module 717 is one for which M9 = A9®aM = 0 for all prime ideals

p of A of height at most one. The category 9TC/(P(A) is formed by

taking as objects the objects of 9TC(A) and for 717, N in 3TC(A), defining

Homgrc/(p(7l7, N) to be the direct limit of Homgyj(717', TV') taken over

those 717' and TV' such that 717/717' is in (P and TV' = N/N" with TV"
in (P. 3/3>(A) is formed in a similar fashion. The first result may now

be stated as follows:

Theorem 1. Let A, 2, D be as above. Let Ai and A2 be maximal

orders in 2, and V a maximal order in D. Then there are functors

F(A1,A2): w(Ai)^m,(A2),

g(a2, r): 3rc(A2)->9n(r),

which induce isomorphisms of the categories

3TL7(P(Ai) -> 3TC/(P(A2) -* m,/6>(T),

3/(P(A0 -♦ 3/(P(A2) -> 3/<P(r).

If 6 is an abelian category, K°(e) denotes the Grothendieck group

of C. It can be defined as follows: For each C in C there is an f(C)

in K°(Q), an abelian group, such that if 0—»C—tC-^C"—*0 is an exact

sequence in e, then f(C)=f(C')+f(C"). Furthermore, if G is any

abelian group and for each 6 in C there is a g(C) in G such that

g(C)=g(C')+g(C") on exact sequences in C then there is

a unique homomorphism h:K°(Q)-*G such that g = hf. Let

G,(A) = 7f°(3/(P(A)) and G(A) = A°(9R/(P(A)). An immediate corollary
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to Theorem 1 is

Corollary. The functors F and G induce isomorphisms

G((A,)-+G((A2)->G,(r),

G(A)i->G(A»)->G(r).

In case A is a Dedekind domain these results are known, so in a

sense Theorem 1 may be considered to be a generalization of the

Morita Theorems which give these isomorphisms in this case (see [5]).

If M is an .4-lattice in S, define M~l= {*G2: MxMQM}. Let

A be a maximal order in 2. Let 7(A) denote the set of A -lattices in

2 which are both left and right ^4-modules. Goldman in [6] defined

D(A), the group of divisors of A, to be the abelian group obtained

from 7(A) by the equivalence relation (quasi-equality for two-sided

fractionary A-ideals).

"M ~ TV in 7(A)    iff   M~l = N'1."

Thus D(A) =7(A)/~, with multiplication given by (M, N)—>MN.

Goldman proves that D(Ai) is naturally isomorphic to D(A2) when

Ai and A2 are maximal orders in 2. The second result of this note is

Theorem 2. 7?(A) is isomorphic to Gt(A).

Theorem 2 and the corollary to Theorem 1 yield the important,

but not surprising, result, namely the

Corollary. If A is a maximal order in 2, and V a maximal order

in D, then D(A) is (naturally) isomorphic to D(T).

Thus considerations of D(A) are reduced to considerations of

7?(r), but r is in a division algebra.

1. Proof of Theorem 1. The notations of §0 are retained here. Let

A and fi be maximal ^4-orders in 2. The conductor, {xG2: QxCA},

is denoted by A: i2. It is an A -lattice in 2 which is a right ideal in A

and a left fl-module. Define F(A, Q): 3rc(A)->3TC(Q) by F(A, Q)(M)
=A: £2 ® a M for the left A-module M. Certainly F(A, 12) is a func-

tor. Since Av is a flat A -module for each prime ideal p of A, it is

clear that Af ®a F(A, 12) = F(Ap, i2p) for each prime ideal p of A.

Hence F takes torsion modules to torsion modules, and pseudo-nul

modules to pseudo-nul modules, and consequently induces functors

F'(A, fi):   2fTC/(P(A) -» 3H/(P(0),

F"(A, 0): 3/(P(A) -» 3/<P(Q).

(F" is induced by F'.)
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To show that F' (and hence F") is an isomorphism, it is sufficient

to construct a functorial inverse. But, consider the natural trans-

formation

7(0, A)F(A, 0) -> Tg^A,

given by (12: A) <g>Q (A: 12) ®a M—>M:co®\<8>m—>w\m. Upon local-

izing at a height one or less prime ideal of A, one obtains an identi-

fication; that is, F&t, Af,)F(Ap, 12,,) =7. For in case p=0, 0P=2=A1),

and in the other cases, Ap is a discrete rank-one valuation ring, so

Ap: Qp = wAj, = £2pw and S2P: Ap = M_1i2p=Apw_1, where m is a unit in 2

(by 3.4 of [l]). Hence F' (and so F") is an isomorphism.

Using the same arguments, one shows that F'(A, 12)F'(12, 12')

= F'(A, 12') for maximal A -orders in 2. This says that the isomor-

phisms are natural.

Before proving the second part of Theorem 1, a generalization of

Proposition 4.2 of [l] is needed.

The proof is exactly as in [l]. Proposition 4.1 of [l] and its proof

remain valid when Horn is replaced by Homp and ® by ®r, so it

can be used as in the proof of [l, Proposition 4.2].

Proposition 1. Let A be a noetherian integrally closed integral do-

main with quotient field K. Let 2 be a finite-dimensional central simple

K-algebra. Suppose 2 = Hom£>(F, V) where D is a central division K-

algebra and V a finite-dimensional right D-module. An A-order A in 2

is maximal if, and only i/, there is a maximal A-order T in D and a

right T-submodule E o/ V which is a reflexive A-lattice such that A

= Homr(7i, E). In this case r = HomA(£, E).

Let A be a maximal order in 2 and let E and V be as in Proposition

1. Define G(A, V): 3TC(A)-»3TC(r) by G(A, T)(M) =Homr(£, T) ®A 717.
The localization arguments used above show that G(A, T) preserves

torsion and pseudo-nullity, so G induces

g'(a, r): 3iz/(P(A)-^2m;/(P(r),

G"(A, T): 3/(P(A)^3/(P(r).

There is also the functor G(r, A): 3TC(T) -> 311(A) defined by

G(r, A)(TV)=E <g)r N. As before, there are natural transformations

G(A, r)G(r, A)->73TrCr>,

G(r, A)G(A, r)^73TI(A).

The first is given by the natural homomorphism Homr(7i, r) ®a E

-^HomA(£, Ti)=r, the second by E ®rHomr(£, r)-*Homr(7i:, E)

= A (cf. [l, Proposition A.4]). Once again, these localize to identifica-
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tions so

G'(A, r)G'(I\ A) = 79TC/(p(r,;

G'(r, a)G'(a, r) = 73ir/(p(A).

This concludes the proof of Theorem 1.

Heller and Reiner in [4], [5] discuss the exact sequences

Kl&) -»G,(A) -»G(A) ^ 7f "(2) -+ 0,

KxiD) -> G,iT) -► G(r) -» K°iD) -► 0,

where A is a Dedekind domain.

The corollary to Theorem 1 generalizes the discussion on pp. 351-

352 of [5], i.e. it implies that these are isomorphic sequences for any

noetherian integrally closed integral domain A.

Another application of the corollary to Theorem 1 is

Proposition 2. Let A be a noetherian integrally closed integral do-

main with quotient field K. Let V be a finite-dimensional vector space

over K and let 2 = Homx(F, V). Let A be a maximal order in 2. Then

G((A) = D(A)        (divisor group of A),

G(k) = C(A) ® Z (C(A) = class group of A).

Proof. By the corollary to Theorem 1, Gt(A)=Gt(A) and G(A)

= G(A). By Proposition 11 of [3, §4, n°5], Gt(A)=D(A). By Proposi-

tion 17 of [3, §4, n°8], G(A) = C(A)®Z.
Remark. Theorem 2 is a generalization of this proposition.

2. Proof of Theorem 2. The proof of the theorem is exactly the

proof of Proposition 11 of [3, §4, n°5] modified to the present situa-

tion.

Let A be a maximal ^4-order in 2. For each prime (two-sided)

ideal ty of A of height one let div ty denote its image in D(A). In [7]

it is proved that there is a bijection, given by $—*%^r\A, of the set

of prime ideals of height one of A to the set of prime ideals of height

one of A. Let P(A) denote the set of prime ideals of A.

Let ME3(A). Then if p is a prime ideal of A, the Ap-module M$

has finite length, denoted by /p(M„). Since j|f„ = 0 if ME<P(A), there

is induced a map

X: 3/<P(A) -> 7>(A)

defined by X(M) = z2h(M») div ^, $ = <$nA, ^EP(A). The theorem
will be proved if it can be shown that (D(A), x) satisfies the universal

mapping property defining the Grothendieck group.
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For a A-module M, let Ass M denote the set of prime (two-sided)

ideals ^3 of A such that there is a nonzero submodule M' of M with

AnnA M" = ty for every nonzero submodule M" of M' (see [7]).

Proposition 3. Let M be a finitely generated left A-module. Then

there is a chain of submodules M=Mo'DMiZ) • • • DMT = 0, r^O, such

that Mi/Mi+i is isomorphic to a module A/ft,-, ft,- a left ideal of A,

where Ass A/ft,- = { $,} and AnnA(A/ft.) = $,-, tyi a prime ideal of A.

The proof is the same as for Theorem 1 of [2, §1, n°4] and is

omitted.

It is clear that x is additive on exact sequences, so Proposition 3

shows that

x(M) = £ x(A/ft.)
•-o

where the ft,- are left ideals satisfying the conclusion of Proposition 3.

The next proposition permits a study of these modules.

Proposition 4. Let $GP(A), p = fyr\A. Let m be a minimal left

ideal in the simple Af/pAp-algebra Ap/^Ap. Let n = mr\(A/ty). Then

(i) If ft is a left ideal of A such that Ass A/ft = {%} and ft2$,
then the class of A/ft in Gt(A) is some integral multiple of the class of n

in Gt(A).
(ii) x(n)=div^3.

Proof. Throughout this proof let S=A/\\. Let [M] denote the

class of M in Gt(A).
Let nti and nt2 be two minimal left ideals in S9. Then there is a /

in S, t a unit in S9, such that m2 = rttiJ. Let n, = m,n.S. Then nitQn2,

so consider the homomorphism m—»'n2. When localized at p it is the

isomorphism ttti—>'m2. If q is a prime ideal of height one of A distinct

from p, then (tu)q = 0 = (n2)q, so t localized at q is also an isomor-

phism. So in 3/(P(A) this map is an isomorphism, hence [ni] = [n2].

Suppose that ft is a left ideal satisfying the hypotheses of condi-

tion (i). Then (ft/1^ is a left ideal in S9, so is the direct sum of

minimal left ideals nti, • • • , mt of S9. Let n,- = 5r>\m< and consider

tti+ • • • +ttj in 5. This sum is direct. The homomorphisms rii-f- • • •

+nt-Kft/^)snS and ft/^-Kft/^nS are isomorphisms at every

localization. Hence t[n] = [ni+ • • • +n(] = [ft/'ip]. This holds when

ft=A, so let [A/$]=[m+ • • • +n.]=/[n] where s=[(A/$),:

(A/p)*]. Then t = s.
Now consider the exact sequence 0—►ft/'p—>A/*!l3—>A/ft—»0. Then
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[A/31] = [A/?] - [3t/$]

= *[n] - t[n]

So (i) has been established, (ii) is clear from the definition of n.

Corollary. For each $GP(A), let n($) be a module constructed in

Proposition 4. Then Gt(A) is free on the set [tt($)].

This follows immediately from the two previous propositions.

Proposition 5. For each torsion le/t A-module M, let g(M) be an

element in an abelian group G. Suppose g satisfies the two conditions

a. 7/ 0—>Af'—>A7—>7kf"—>0 is an exact sequence in 3(A), then g(M)
= g(M')+g(M").

b. 7/ T17G<P(A), then g(M)=0.
Then there is a unique homomorphism 0: D(A)—>G such that g=6x-

Proof. Let n(ty) be an ideal of A/$ defined in Proposition 4. Let

0(div $) =g(n(<$)). Then continue as in Proposition 11 of [3, §4, n°5].

Propositions 3 and 4 are designed to make that proof work.

Proposition 5 shows that D (A) satisfies the universal property

which defines the Grothendieck group, so it must be isomorphic to

it. This completes the proof of Theorem 2.

Remark. Since A°(2) = K°(D) = Z in (HR) and Z is Z projective,

G°(r) = G(r)©Z where C(T) is the kernel of G<>(T)->Ko(D), and

hence is the image of G?(T)—>G°(T). A natural question is: What is

an ideal (or module) theoretical description of the subgroup 77 of

D(T) such that D(T)/H=C(T)? C(T) is a generalization of the com-

mutative class group (see [3]). A corollary to the corollary to Theo-

rem 1 is that G(A) is isomorphic to C(T) and both do not depend on

the maximal orders in question.
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