ON ODD PERFECT NUMBERS. III

D. SURYANARAYANA

It is not known whether or not odd perfect numbers exist. However, many interesting necessary conditions for an odd integer to be perfect have been found out. A bibliography of previous work on odd perfect numbers is given by McCarthy [3].

Throughout this paper n denotes an odd perfect number. The following results have been proved in [4], [6] and [5] respectively:

- (i) $\prod_{p/n} p/(p-1) < (175/96) \zeta(3) < 2.19125.$
- (ii) n is of the form 12t+1 or 36t+9.

(iii) If *n* is of the form 36t+9 and 5|n, then

$$\sum_{p|n} \frac{1}{p} < \frac{1}{3} + \frac{1}{5} + \frac{1}{13} + \log\left(\frac{65}{61}\right) \qquad (\sim 0.674).$$

(iv) If n is of the form 36t+9 and $5\nmid n$, then

$$\sum_{p|n} \frac{1}{p} < \frac{1}{3} + \frac{1}{338} + \log\left(\frac{18}{13}\right) \qquad (\sim 0.662).$$

The object of this paper is to improve the upper bound for the product $\prod_{p/n} p/(p-1)$ given by (i) above. We prove the following:

THEOREM. (a) If n is of the form 12t+1 and 5 | n,

$$2 < \prod_{p|n} \frac{p}{p-1} < \frac{56791}{33612} \cdot \zeta(3) < 2.031002.$$

(β) If n is of the form 12t+1 and $5\nmid n$,

$$2 < \prod_{p|n} \frac{p}{p-1} < \frac{1760521}{1050375} \cdot \zeta(3) < 2.014754.$$

(γ) If n is of the form 36t+9 and $5 \mid n$,

$$2 < \prod_{p \mid n} \frac{p}{p-1} < \frac{318897}{177023} \cdot \zeta(3) < 2.165439.$$

(b) If n is of the form 36t+9 and $5\nmid n$,

$$2 < \prod_{p \mid n} \frac{p}{p-1} < \frac{3706148208}{2125240975} \cdot \zeta(3) < 2.096234.$$

Received by the editors July 14, 1966.

D. SURYANARAYANA

PROOF. Euler proved that *n* must be of the form $p_0^{\alpha_0} \cdot x^2$, where p_0 is a prime of the form $4\lambda + 1$, α_0 is of the form $4\mu + 1$, x > 1 and $(p_0, x) = 1$. Hence we can write $n = p_0^{\alpha_0} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where α_r is even for $1 \le r \le k$. We shall suppose without loss of generality that $p_1 < p_2 < \cdots < p_k$. Let $\sigma(n)$ denote the sum of all the positive divisors of *n*. Since *n* is a perfect number, we have $\sigma(n) = 2n$, from which it can easily be seen that

(A)
$$\prod_{r=0}^{k} \frac{p_r}{p_r - 1} = 2 \prod_{r=0}^{k} (1 - p_r^{-(\alpha_r + 1)})^{-1} > 2.$$

Throughout the following q_r denotes the *r*th prime, counting 2 as the first prime. We make use of the following well-known identity due to Euler:

(B)
$$\prod_{r=1}^{\infty} (1 - q_r^{-3})^{-1} = \zeta(3),$$

where $\zeta(s)$ is the Riemann Zeta function.

(a) Suppose *n* is of the form 12t+1. In this case, it has been proved in [4, p. 134] that p_0 is of the form 12N+1 and hence $p_0 \ge 13$.

(a₁) Suppose 5 | n and 7 | n. Then $p_1 = 5$, $p_2 = 7$. Now $\alpha_2 \ge 4$. For, if $\alpha_2 = 2$, then $\sigma(p_2^{\alpha_2}) = 3.19$ and since $\sigma(n) = 2n$, it would follow that 3 | n, which can not hold.

(a_{1.1}) If $p_0 = 13$, then $p_3 \ge 11$ and $p_r \ge q_{r+3}$ for $4 \le r \le k$. Since α_r is even for $1 \le r \le k$, $\alpha_2 \ge 4$ and $\alpha_0 \ge 1$, we have

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 13^{-2})^{-1}(1 - 5^{-3})^{-1}(1 - 7^{-5})^{-1}(1 - 11^{-3})^{-1} \times \prod_{r=4}^{k} (1 - p_{r}^{-3})^{-1} < (1 - 13^{-2})^{-1}(1 - 5^{-3})^{-1}(1 - 7^{-5})^{-1}(1 - 11^{-3})^{-1} \times \prod_{r=7}^{\infty} (1 - q_{r}^{-3})^{-1} = \frac{(1 - 2^{-3})(1 - 3^{-3})(1 - 7^{-3})(1 - 13^{-3})}{(1 - 13^{-2})(1 - 7^{-5})} \cdot \zeta(3), \quad \text{by (B)} = \frac{56791}{67224} \cdot \zeta(3).$$

(a_{1.2}) If $p_0 \neq 13$, then since p_0 is of the form 12N+1, $p_0 \geq 37$. $p_r \geq q_{r+2}$ for $3 \leq r \leq k$. Hence

$$\prod_{r=0}^{k} (1-p_{r}^{-(\alpha_{r}+1)})^{-1} < (1-37^{-2})^{-1}(1-5^{-3})^{-1}(1-7^{-5})^{-1} \prod_{r=5}^{\infty} (1-q_{r}^{-3})^{-1} < \frac{56791}{67224} \cdot \zeta(3).$$

Hence, by (A), (α) follows in the case (a₁).

(a₂) Suppose 5 | n and $7 \nmid n$, then $p_1 = 5$ and $p_r \ge q_{r+3}$ for $2 \le r \le k$. Since α_0 is odd, $(1+p_0) | \sigma(p_0^{\alpha_0})$ and hence $\{(1+p_0)/2\} | n$, since $\sigma(n) = 2n$. Now, $p_0 \ne 13$. For, otherwise, by the above, it would follow that 7 | n, which is not the case. Since p_0 is of the form 12N+1, $p_0 \ge 37$. Hence

$$\prod_{r=0}^{k} (1 - p_r^{-(\alpha_r+1)})^{-1} < (1 - 37^{-2})^{-1} (1 - 5^{-3})^{-1} \prod_{r=5}^{\infty} (1 - q_r^{-3})^{-1} < \frac{56791}{67224} \cdot \zeta(3).$$

Hence, by (A), (α) follows in this case also. Thus (α) is proved.

(a₃) Suppose $5 \nmid n$ and $7 \mid n$, then $p_1 = 7$. Now, $\alpha_1 \ge 4$. For, if $\alpha_1 = 2$, it would follow as in (a₁) that $3 \mid n$, which does not hold.

(a_{3.1}) If $p_0 = 13$, then $p_2 \ge 11$ and $p_r \ge q_{r+4}$ for $3 \le r \le k$. Hence

$$\prod_{r=0}^{k} (1-p_{r}^{-(\alpha_{r}+1)})^{-1} < (1-13^{-2})^{-1}(1-7^{-5})^{-1}(1-11^{-3})^{-1} \prod_{r=7}^{\infty} (1-q_{r}^{-3})^{-1}$$
$$= \frac{(1-2^{-3})(1-3^{-3})(1-5^{-3})(1-7^{-3})(1-13^{-2})}{(1-13^{-2})(1-7^{-5})} \cdot \zeta(3)$$
$$= \frac{1760521}{2100750} \cdot \zeta(3).$$

(a_{3.2}) If $p_0 \neq 13$, then $p_0 \geq 37$ and $p_r \geq q_{r+3}$ for $2 \leq r \leq k$. Hence

$$\prod_{r=0}^{k} (1 - p_r^{-(\alpha_r+1)})^{-1} < (1 - 37^{-2})^{-1} (1 - 7^{-5})^{-1} \prod_{r=5}^{\infty} (1 - q_r^{-3})^{-1} < \frac{1760521}{2100750} \cdot \zeta(3).$$

Hence, by (A), (β) follows in case (a₃).

(a₄) If $5 \nmid n$ and $7 \nmid n$, then $p_r \ge q_{r+4}$ for $1 \le r \le k$. As in (a₂), $p_0 \ne 13$ and hence $p_0 \ge 37$. Hence

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 37^{-2})^{-1} \prod_{r=5}^{\infty} (1 - q_{r}^{-3})^{-1} < \frac{1760521}{2100750} \cdot \zeta(3).$$

Hence, by (A), (β) follows in this case also. Thus (β) is proved.

(b) Suppose *n* is of the form 36t+9. Since $3 \mid n, p_1=3$.

(b₁) If 5 | n, then 7 | n in virtue of the result that $3 \cdot 5 \cdot 7$ does not divide *n* (proved by Kuhnel, p. 203 of [2]).

(b_{1.1}) Suppose $p_0 = 5$.

(b_{1,1,1}) If 11 | n, then $\alpha_0 = 1$ in virtue of the result that $3 \cdot 5^2 \cdot 11$ does not divide *n* (proved by Kanold [1, p. 26]). In this case $p_2 = 11$ and $p_r \ge q_{r+3}$ for $3 \le r \le k$. Further, $\alpha_2 \ge 4$. For, if $\alpha_2 = 2$, then $\sigma(p_2^{\alpha_2}) = 133$ = 7.19 and since $\sigma(n) = 2n$, it would follow that 7 | n, which is not the case. Also, $\alpha_1 \ge 4$. For, if $\alpha_1 = 2$, then $\sigma(p_1^{\alpha_1}) = \sigma(3^2) = 13$ | n and this implies that

$$\sum_{p|n} \frac{1}{p} > \frac{1}{3} + \frac{1}{5} + \frac{1}{11} + \frac{1}{13} > \frac{1}{3} + \frac{1}{5} + \frac{1}{13} + \log\left(\frac{65}{61}\right),$$

a contradiction to (iii). Hence

$$\prod_{r=0}^{k} (1-p_{r}^{-(\alpha_{r}+1)})^{-1} < (1-5^{-2})^{-1}(1-3^{-5})^{-1}(1-11^{-5})^{-1} \prod_{r=6}^{\infty} (1-q_{r}^{-3})^{-1} < \frac{318897}{354046} \cdot \zeta(3).$$

Hence, by (A), (γ) follows in this case.

(b_{1,1,2}) Suppose $11 \nmid n$. Then $\alpha_1 \neq 4$. For, if $\alpha_1 = 4$, then $\sigma(p_1^{\alpha_1}) = 121 = 11^2$ and since $\sigma(n) = 2n$, it would follow that $11 \mid n$, which is not the case.

Hence, either $\alpha_1 = 2$ or $\alpha_1 \ge 6$.

Suppose $\alpha_1 = 2$. Then $\sigma(p_1^{\alpha_1}) = 13 | n$ and in this case both 17 and 19 together do not divide *n*. For, otherwise, it would follow that

$$\sum_{p|n} \frac{1}{p} > \frac{1}{3} + \frac{1}{5} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} > \frac{1}{3} + \frac{1}{5} + \frac{1}{13} + \log\left(\frac{65}{61}\right),$$

a contradiction to (iii). Hence

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 5^{-2})^{-1}(1 - 3^{-3})^{-1}(1 - 13^{-3})^{-1}(1 - 17^{-3})^{-1} \times \prod_{r=9}^{\infty} (1 - q_{r}^{-3})^{-1},$$

if 17 | n, 19 | n; and

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 5^{-2})^{-1}(1 - 3^{-3})^{-1}(1 - 13^{-3})^{-1}(1 - 19^{-3})^{-1} \times \prod_{r=0}^{\infty} (1 - q_{r}^{-3})^{-1},$$

if $17 \nmid n$, $19 \mid n$; and

$$\prod_{r=0}^{k} (1-p_{r}^{-(\alpha_{r}+1)})^{-1} < (1-5^{-2})^{-1}(1-3^{-3})^{-1}(1-13^{-3})^{-1} \prod_{r=9}^{\infty} (1-q_{r}^{-3})^{-1},$$

if 17 / n, 19 / n.

Since $1 < (1-19^{-3})^{-1} < (1-17^{-3})^{-1}$, it follows that in all the three cases, we have

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 5^{-2})^{-1}(1 - 3^{-3})^{-1}(1 - 13^{-3})^{-1}(1 - 17^{-3})^{-1}$$
$$\times \prod_{r=9}^{\infty} (1 - q_{r}^{-3})^{-1}$$
$$= \frac{318897}{354046} \cdot \zeta(3).$$

If $\alpha_1 \ge 6$, then

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 5^{-2})^{-1} (1 - 3^{-7})^{-1} \prod_{r=0}^{\infty} (1 - q_{r}^{-3})^{-1} < \frac{318897}{354046} \cdot \zeta(3).$$

Hence, by (A), (γ) follows in the case $(b_{1,1,2})$ also.

(b_{1.2}) Suppose $p_0 \neq 5$. Then $p_2 = 5$. In this case, as in (a₂), $p_0 \neq 13$. For, otherwise, it would follow that $7 \mid n$, which can not hold. Since p_0 is of the form $4\lambda + 1$, $p_0 \ge 17$. $p_r \ge q_{r+2}$ for $3 \le r \le k$. Hence

$$\prod_{r=0}^{k} (1-p_{r}^{-(\alpha_{r}+1)})^{-1} < (1-17^{-2})^{-1}(1-3^{-3})^{-1}(1-5^{-3})^{-1} \prod_{r=5}^{\infty} (1-q_{r}^{-3})^{-1} < \frac{318897}{354046} \cdot \zeta(3).$$

Hence, by (A), (γ) follows in this case also. Thus (γ) is proved.

(b₂) Suppose $5 \nmid n$. Since p_0 is of the form $4\lambda + 1$, $p_0 \ge 13$. Also, $p_0 \ne 29$. For, otherwise, it would follow as in (a₂) that $(1+p_0)/2 = 3 \cdot 5 \mid n$, and this implies that $5 \mid n$, which is not the case.

(b_{2.1}) If 7 | *n*, then $p_2 = 7$.

(b_{2.1.1}) Suppose $\alpha_1 = \alpha_2 = 2$. Then both 13 and 19 divide *n*, since $\sigma(p_1^{\alpha_1}) = 13$, $\sigma(p_2^{\alpha_2}) = 57 = 3 \cdot 19$ and $\sigma(n) = 2n$. In this case, neither 11 nor 17 divides *n*. For, otherwise, it would follow that

$$\sum_{p|n} \frac{1}{p} > \frac{1}{3} + \frac{1}{7} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} > \frac{1}{3} + \frac{1}{338} + \log\left(\frac{18}{13}\right),$$

a contradiction to (iv). Hence, either (1) $p_0 = 13$, $p_3 = 19$, $p_r \ge q_{r+5}$ for $4 \le r \le k$; or (2) $p_0 \ne 13$, $p_3 = 13$, $p_4 = 19$, $p_r \ge q_{r+4}$ for $5 \le r \le k$. In the second case, $p_0 \ge 37$, since p_0 is of the form $4\lambda + 1$, $p_0 \ne 13$, $17\nmid n$ and $p_0 \ne 29$. In the first case,

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 13^{-2})^{-1} (1 - 3^{-3})^{-1} (1 - 7^{-3})^{-1} (1 - 19^{-3})^{-1}$$
$$\times \prod_{r=9}^{\infty} (1 - q_{r}^{-3})^{-1}$$
$$= \frac{1853074104}{2125240975} \cdot \zeta(3).$$

In the second case,

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 37^{-2})^{-1}(1 - 3^{-3})^{-1}(1 - 7^{-3})^{-1}(1 - 13^{-3})^{-1} \times (1 - 19^{-3})^{-1} \prod_{r=9}^{\infty} (1 - q_{r}^{-3})^{-1} < \frac{1853074104}{2125240975} \cdot \zeta(3).$$

 $(b_{2,1,2})$ If at least one of α_1 and α_2 is not equal to 2, then either $\alpha_1 \ge 4$, $\alpha_2 \ge 4$ or $\alpha_1 \ge 4$, $\alpha_2 = 2$ or $\alpha_1 = 2$, $\alpha_2 \ge 4$. The proofs for the first two cases are omitted as they are similar to the previous proofs. In both these cases, we easily verify that the upper bound obtained for

 $\prod_{p/n} p/(p-1)$ is less than the bound obtained in the third case. In the third case, we have

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 13^{-2})^{-1} (1 - 3^{-3})^{-1} (1 - 7^{-5})^{-1} \prod_{r=5}^{\infty} (1 - q_{r}^{-3})^{-1} < \frac{1853074104}{2125240975} \cdot \zeta(3).$$

Hence, by (A), (δ) follows in any case under (b_{2.1}). (b_{2.2}) If $7 \nmid n$, then $p_r \ge q_{r+3}$ for $2 \le r \le k$. Hence

$$\prod_{r=0}^{k} (1 - p_{r}^{-(\alpha_{r}+1)})^{-1} < (1 - 3^{-3})^{-1} \prod_{r=5}^{\infty} (1 - q_{r}^{-3})^{-1} < \frac{1853074104}{2125240975} \cdot \zeta(3).$$

Hence, by (A), (δ) follows in this case also. Thus (δ) is proved. Thus the proof of the theorem is complete.

References

1. H. J. Kanold, Folgerungen aus dem Vorkommen einer Gauss'schen Primzahl in der Primfaktorenzerlegung einer ungeraden vollkommenen Zahl, J. Reine Angew. Math. 186 (1944), 25-29.

2. U. Kühnel, Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen, Math. Z. 52 (1949), 202–211.

3. P. J. McCarthy, Odd perfect numbers, Scripta Math. 23 (1957), 43-47.

4. D. Suryanarayana and N. Venkateswara Rao, On odd perfect numbers, Math. Student 29 (1961), 133-137.

5. D. Suryanarayana, On odd perfect numbers. II, Proc. Amer. Math. Soc. 14 (1963), 896-904.

6. J. Touchard, On prime numbers and perfect numbers, Scripta Math. 19 (1953), 35-39.

ANDHRA UNIVERSITY, WALTAIR, INDIA