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It is not known whether or not odd perfect numbers exist. How-

ever, many interesting necessary conditions for an odd integer to be

perfect have been found out. A bibliography of previous work on odd

perfect numbers is given by McCarthy [3].

Throughout this paper re denotes an odd perfect number. The fol-

lowing results have been proved in  [4],   [6] and  [5] respectively:

(0  Iiplnp/ip-l)<(175/96) f(3)<2.19125.
(ii) re is of the form 12/ +1 or 36/+9.

(iii)  If re is of the form 36t + 9 and 51 re, then

_.,   1        1        1        1 /65\IZ —< — + — + — + log( —)        (~0.674).
X  P       3       5      13 \61/

(iv) If re is of the form 36/ + 9 and 5|re, then

_11        1 /18\
zZ — < — +-+ log(—I        (~ 0.662).
X  P       3      338 \13/

The object of this paper is to improve the upper bound for the

product Tlp/np/ip — 1) given by (i) above. We prove the following:

Theorem, (a) If re is of the form 12t+l and 5|re,

_     p        56791
2 < IT —L~ <-f(3) < 2.031002.

p,„ p - 1      33612

(j8) If're is ofthe form 12t+l and 5\n,

__      * 1760521
2 < JI —— <-f(3) < 2.014754.

,lt p - 1      1050375

(7) If re is of the form 36j+9 and 51 re,

__      p 318897
2 < II —— <-f(3) < 2.165439.

tinp-l      177023

(8) If re is of the form 36t+9 and 5|w,

_.      p 3706148208
2 < I[ -£— <-f(3) < 2.096234.

tit P- 1     2125240975
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Proof. Euler proved that n must be of the form p^-x2, where po is

a prime of the form 4X+1, ao is of the form 4 /x+1, x> 1 and (po, x)

= 1. Hence we can write n — p^p^p^ ■ ■ ■ p^', where ar is even for

l^r^k. We shall suppose without loss of generality that pi<p2

< ■ ■ • <pk. Let a(n) denote the sum of all the positive divisors of n.

Since n is a perfect number, we have o-(«)=2«, from which it can

easily be seen that

(A) n -^— = 2 n (i - #-<*«))-»
r-0    Pr  —   1 r=0

> 2.

Throughout the following qr denotes the rth prime, counting 2 as

the first prime. We make use of the following well-known identity due

to Euler:

(B) fl(i- ?r3)-' = f(3),
r-1

where f (s) is the Riemann Zeta function.

(a) Suppose n is of the form 12/4-1. In this case, it has been proved

in [4, p. 134] that p0 is of the form 12iV-|-1 and hence po ̂  13.

(ai) Suppose 5|n and 7|«. Then pi = 5, p2 = 7. Now a2^4. For, if

a2 = 2, then a(p2ti)=3.19 and since <r(«) = 2w, it would follow that

3|«, which can not hold.

(ai.i) If p0 = 13, then p3i=ll and pr^qr+s for 4^r^&. Since ar is

even for 1 :Sr^&, a2 3:4 and ao^ 1, we have

II (I - /T(<"+1))-1 < (1 - 13--)-'(l - 5 "3)-'(l - 7-5)-1(l -11"3)-1
r=0

xlta-/-,-3)-'
r-4

< (i - n-2)-1^ -5~3)-'(i - 7-6)-'(i -11-3)-1

X lid-or3)-
r=7

(l-2-»)(l-3-')(l-7-*)(l-13-')  ^
= —-f(3),      by (B)(1-13-2) (1-7-s) -v

56791
=-r(3).

67224
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(ai.2) If po7*13, then since po is of the form 12A/+1, po^37.

pr = <Lr+2 for 3^r^k. Hence

II (l-#r(-^1))-1<(l-37-2)-1(l-5-3)-1(l-7-^)-in(l-gr8)-1

56791
<-f(3).

67224

Hence, by (A), (a) follows in the case (ai).

(a2) Suppose 5|w and 7|re, then pi = 5 and pT}£qT+i for 2^r^k.

Since a0 is odd, il+po)\aiPo°) and hence {il+p0)/2} | re, since

o-(re) =2re. Now, po9^13. For, otherwise, by the above, it would follow

that 71 re, which is not the case. Since p0 is of the form 12N+1, p0^37.

Hence

n (i - #-«■*•»)-! < (i _ 37-2)-'(i - 5-3)-1 n (i - or*)-1
r=0 f—6

56791

Hence, by (A), (a) follows in this case also. Thus (a) is proved.

(a3) Suppose 5|w and 7|re, then pi = 7. Now, ai^4. For, if ai = 2, it

would follow as in (ai) that 31 re, which does not hold.

(a3.i)  If po~ 13, then p2^ 11 and pT^qr+4 for 3 ^r g&. Hence

II (l-#f«-H-«)-1<(l-13-»)-I(l-7-*)-1(l-ll-»)-1 fl (1-grV
r=0 r-7

(1 —2-3)(l —3"3)(1 —5"3)(1 —7"3)(1 —13-3)
=:-ii-ii-ii-ii-i. f(3)

(1 —13-2)(1 —7-5)

1760521
=-f(3).

2100750

(a3.2) li po^l3, then po^31 and pr^qr+3 ior 2^r^k. Hence

II (1 - $r«"H>)-i < (i _ 37-2)-i(l - 7-0-1 ft (1 - ?r3)-'
r=0 r=5

1760521
<-f(3).

2100750

Hence, by (A), (j3) follows in case (a3).
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(a4) If 5f« and l\n, then pr^qt+i for l^r^k. As in (a2), p0^13

and hence ^o^37. Hence

II (l - pr***?)-1 < (l - 37-*)-1 ft (l - or3)-1
r=0 r—6

1760521
<-f(3).

2100750

Hence, by (A), (j3) follows in this case also. Thus (/3) is proved.

(b) Suppose n is of the form 36^+9. Since 31n, pi = 3.

(bi) If 5|w, then 7|w in virtue of the result that 3-5-7 does not

divide n (proved by Kuhnel, p. 203 of [2]).

(bi.i) Suppose po — 5.

(bi.i.i) If 111 n, then a0=l in virtue of the result that 3 -52-11 does

not divide n (proved by Kanold[l, p. 26]). In this case p2 = ll and

£r^<7r+3 for 3grgfe. Further, a2^4. For, if a2 = 2, then <r(J>?) = 133

= 7.19 and since a(n) = 2m, it would follow that 71 n, which is not the

case. Also, ai^4. For, if ai = 2, then a(pi1)=a(32) = 13\n and this

implies that

__   1        1        1        1        1        1        1        1 /65\
E—> — + — + — + — > — + — + — +log (—),
pZ   p       3       5       11      13       3        5       13 \61/

a contradiction to (iii). Hence

n (i-p7<°*i>)-i<(L-s-*)-i(i-3-')-ia-u-<>)-1 n a-^-1
r=0 r=6

318897

<i54^o-f(3)-

Hence, by (A), (7) follows in this case.

(bi.1.2) Suppose lljw. Then ai^4. For, if ai = 4, then a(p"1)

= 121 = ll2 and since a(n)=2n, it would follow that 11 \n, which is

not the case.

Hence, either ai = 2 or ai ^ 6.

Suppose ai = 2. Then a(p"l) — 13\n and in this case both 17 and 19

together do not divide n. For, otherwise, it would follow that

^   1        1        1        1        11        1        1        1 /65\
E —> — + — + — + — + — > — + — + — +log — ,
%Tn   p       3       5      13     17     19      3       5      13 \61/

a contradiction to (iii). Hence
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k

n (i - ^-<ar+i))-1 < (i - 5-2)->(i - 3-3r'(i - w-^-ki - 17-3)-1
r-0

x II (1 - gr')-1,
r=9

if 171 re, 19\n; and

k

II (1 - p7f-ar¥l))-x < (1 - 5-2)-'(l - 3-8)-'(l - 13-3)-'(l - 19"3)-1
r=0

x A (1 - </r3)-',
r-9

if 17|re, 19|re; and

n (i-/>r-^i))-<(i-5-2)-i(i-3-3)-i(i-i3-3)-1 n (i-fr-')-1,
r=0 r=9

if 17|re, 19|re.

Since K(l-19-3)-1<(l-17-3)-1, it follows that in all the three

cases, we have

k

U (i _ £r-(«r+i))-i < (l - S-2)-1^ - 3-')-l(l - 13-3)"'(1 - 17"3)-1
r=0

xfrd-^-3)-1
r-9

318897
=-f(3).

354046

If «i^6, then

II (1 ~ Pr-(a^)-x < (1 - 5-2)->(l ~ 3-')-1 n (1 - gr8)-1
r=0 r=»«

318897
<—-f(3).

354046

Hence, by (A), (7) follows in the case (bi.i.2) also.

(bi.s) Suppose por^S. Then pi = 5. In this case, as in (a2), p0^13.

For, otherwise, it would follow that 71 re, which can not hold. Since p0

is of the form 4X+1, p0^17. pT^qr+2ior 3^rg,k. Hence
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TJ(i_/,r(«,+.))-i<(i_i7^)-i(l-3-')-1(l-5-3)~in(l-or3)-1
r=0 r-6

318897
<-r(3).

354046

Hence, by (A), (7) follows in this case also. Thus (7) is proved.

(b2) Suppose 5\n. Since po is of the form 4X + 1, po^l3. Also,

po5^29. For, otherwise, it would follow as in (a2) that (l+p0)/2

= 3 • 51 n, and this implies that 51 n, which is not the case.

(b2.i) If 7|rc, then p2 = 7.

(b2.i.i) Suppose ai = a2 = 2. Then both 13 and 19 divide n, since

o-(Pi1) = 13, a(p?) = 57 = 3-19 and a(n)=2n. In this case, neither 11

nor 17 divides n. For, otherwise, it would follow that

—   1111111 1 /18\E—> — + — + —+ — + — > — + — + iog( —),
X   P       3        7       13      17      19       3       338 \13/

a contradiction to (iv). Hence, either (1) p0= 13, p3 = 19, prs^qr+6 for

i^r^k; or (2) p0^13, p3 = 13, p4=19, pr^qr+4 for 5^r^k. In the

second case, po^37, since pn is of the form 4X4-1, p0^13, 17|wand

poP^29. In the first case,

n (i - * «■* v < (i - i3-y\i - 3-yi(i - 7-yi(i - 19-y1
r-0

x n (i - oty1
r-9

1853074104
=-r(3).

2125240975

In the second case,

fi (1 - *<MV < (1 - 37-2r1(l - 3~Y(1 - 7-3r1(l - 13-3)"1

xa-iQ-^na-g;3)"1
r=9

1853074104
<-f(3).

2125240975

(b2.i.2) If at least one of ai and a2 is not equal to 2, then either

«!^4, a2^4 or ai^4, a2 = 2 or ai = 2, a2=^4. The proofs for the first

two cases are omitted as they are similar to the previous proofs. In

both these cases, we easily verify that the upper bound obtained for
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Y[P/np/ip — l) is less than the bound obtained in the third case. In the

third case, we have

no- p7lar+iy
r=0

< (i - 13-y \i - 3-y\i - 7-y1 n (i - grv1

1853074104
<-r(3).

2125240975

Hence, by (A), (8) follows in any case under (b2.i).

(b2.2) If 7|re, then pr^qT+3 for 2 ^r gfc. Hence

n (i - P; ̂  V < (i - 3-3)-1 n (i - q;Y

1853074104
<-Hi).

2125240975

Hence, by (A),  (8) follows in this case also. Thus (8) is proved.

Thus the proof of the theorem is complete.
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