ON ODD PERFECT NUMBERS. III

D. SURYANARAYANA

It is not known whether or not odd perfect numbers exist. However, many interesting necessary conditions for an odd integer to be perfect have been found out. A bibliography of previous work on odd perfect numbers is given by McCarthy [3].

Throughout this paper n denotes an odd perfect number. The following results have been proved in [4], [6] and [5] respectively:
(i) $\Pi_{p / n} p /(p-1)<(175 / 96) \zeta(3)<2.19125$.
(ii) n is of the form $12 t+1$ or $36 t+9$.
(iii) If n is of the form $36 t+9$ and $5 \mid n$, then

$$
\sum_{p \mid n} \frac{1}{p}<\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\log \left(\frac{65}{61}\right) \quad(\sim 0.674) .
$$

(iv) If n is of the form $36 t+9$ and $5 \nmid n$, then

$$
\sum_{p \mid n} \frac{1}{p}<\frac{1}{3}+\frac{1}{338}+\log \left(\frac{18}{13}\right) \quad(\sim 0.662)
$$

The object of this paper is to improve the upper bound for the product $\prod_{p / n} p /(p-1)$ given by (i) above. We prove the following:

Theorem. (α) If n is of the form $12 t+1$ and $5 \mid n$,

$$
2<\prod_{p \mid n} \frac{p}{p-1}<\frac{56791}{33612} \cdot \zeta(3)<2.031002
$$

(β) If n is of the form $12 t+1$ and $5 \nmid n$,

$$
2<\prod_{p \mid n} \frac{p}{p-1}<\frac{1760521}{1050375} \cdot \zeta(3)<2.014754 .
$$

(γ) If n is of the form $36 t+9$ and $5 \mid n$,

$$
2<\prod_{p \mid n} \frac{p}{p-1}<\frac{318897}{177023} \cdot \zeta(3)<2.165439 .
$$

(δ) If n is of the form $36 t+9$ and $5 \nmid n$,

$$
2<\prod_{p \mid n} \frac{p}{p-1}<\frac{3706148208}{2125240975} \cdot \zeta(3)<2.096234 .
$$

Received by the editors July 14, 1966.

Proof. Euler proved that n must be of the form $p_{0}^{\alpha_{0}} \cdot x^{2}$, where p_{0} is a prime of the form $4 \lambda+1, \alpha_{0}$ is of the form $4 \mu+1, x>1$ and (p_{0}, x) $=1$. Hence we can write $n=p_{0}^{\alpha_{0}} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where α_{r} is even for $1 \leqq r \leqq k$. We shall suppose without loss of generality that $p_{1}<p_{2}$ $<\cdots<p_{k}$. Let $\sigma(n)$ denote the sum of all the positive divisors of n. Since n is a perfect number, we have $\sigma(n)=2 n$, from which it can easily be seen that

$$
\begin{align*}
\prod_{r=0}^{k} \frac{p_{r}}{p_{r}-1} & =2 \prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} \tag{A}\\
& >2
\end{align*}
$$

Throughout the following q_{r} denotes the r th prime, counting 2 as the first prime. We make use of the following well-known identity due to Euler:

$$
\begin{equation*}
\prod_{r=1}^{\infty}\left(1-q_{r}^{-3}\right)^{-1}=\zeta(3) \tag{B}
\end{equation*}
$$

where $\zeta(s)$ is the Riemann Zeta function.
(a) Suppose n is of the form $12 t+1$. In this case, it has been proved in [4, p. 134] that p_{0} is of the form $12 N+1$ and hence $p_{0} \geqq 13$.
(a a_{1}) Suppose $5 \mid n$ and $7 \mid n$. Then $p_{1}=5, p_{2}=7$. Now $\alpha_{2} \geqq 4$. For, if $\alpha_{2}=2$, then $\sigma\left(p_{2}^{\alpha_{2}}\right)=3.19$ and since $\sigma(n)=2 n$, it would follow that $3 \mid n$, which can not hold.
($\mathrm{a}_{1.1}$) If $p_{0}=13$, then $p_{3} \geqq 11$ and $p_{r} \geqq q_{r+3}$ for $4 \leqq r \leqq k$. Since α_{r} is even for $1 \leqq r \leqq k, \alpha_{2} \geqq 4$ and $\alpha_{0} \geqq 1$, we have

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(a_{r}+1\right)}\right)^{-1}< & \left(1-13^{-2}\right)^{-1}\left(1-5^{-3}\right)^{-1}\left(1-7^{-5}\right)^{-1}\left(1-11^{-3}\right)^{-1} \\
& \times \prod_{r=4}^{k}\left(1-p_{r}^{-3}\right)^{-1} \\
< & \left(1-13^{-2}\right)^{-1}\left(1-5^{-3}\right)^{-1}\left(1-7^{-5}\right)^{-1}\left(1-11^{-3}\right)^{-1} \\
& \times \prod_{r=7}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
= & \frac{\left(1-2^{-3}\right)\left(1-3^{-3}\right)\left(1-7^{-3}\right)\left(1-13^{-3}\right)}{\left(1-13^{-2}\right)\left(1-7^{-5}\right)} \cdot \zeta(3), \quad \text { by }(\mathrm{B}) \\
= & \frac{56791}{67224} \cdot \zeta(3) .
\end{aligned}
$$

($a_{1.2}$) If $p_{0} \neq 13$, then since p_{0} is of the form $12 N+1, p_{0} \geqq 37$. $p_{r} \geqq q_{r+2}$ for $3 \leqq r \leqq k$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-37^{-2}\right)^{-1}\left(1-5^{-3}\right)^{-1}\left(1-7^{-5}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{56791}{67224} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (α) follows in the case (a_{1}).
(a_{2}) Suppose $5 \mid n$ and $7 \nmid n$, then $p_{1}=5$ and $p_{r} \geqq q_{r+3}$ for $2 \leqq r \leqq k$. Since α_{0} is odd, $\left(1+p_{0}\right) \mid \sigma\left(p_{0}^{\alpha_{0}}\right)$ and hence $\left\{\left(1+p_{0}\right) / 2\right\} \mid n$, since $\sigma(n)=2 n$. Now, $p_{0} \neq 13$. For, otherwise, by the above, it would follow that $7 \mid n$, which is not the case. Since p_{0} is of the form $12 N+1, p_{0} \geqq 37$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-37^{-2}\right)^{-1}\left(1-5^{-3}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{56791}{67224} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (α) follows in this case also. Thus (α) is proved.
(a_{3}) Suppose $5 \nmid n$ and $7 \mid n$, then $p_{1}=7$. Now, $\alpha_{1} \geqq 4$. For, if $\alpha_{1}=2$, it would follow as in $\left(\mathrm{a}_{1}\right)$ that $3 \mid n$, which does not hold.
($\mathrm{a}_{3.1}$) If $p_{0}=13$, then $p_{2} \geqq 11$ and $p_{r} \geqq q_{r+4}$ for $3 \leqq r \leqq k$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-13^{-2}\right)^{-1}\left(1-7^{-5}\right)^{-1}\left(1-11^{-3}\right)^{-1} \prod_{r=7}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& =\frac{\left(1-2^{-3}\right)\left(1-3^{-3}\right)\left(1-5^{-3}\right)\left(1-7^{-3}\right)\left(1-13^{-3}\right)}{\left(1-13^{-2}\right)\left(1-7^{-5}\right)} \cdot \zeta(3) \\
& =\frac{1760521}{2100750} \cdot \zeta(3)
\end{aligned}
$$

($\mathrm{a}_{3.2}$) If $p_{0} \neq 13$, then $p_{0} \geqq 37$ and $p_{r} \geqq q_{r+3}$ for $2 \leqq r \leqq k$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-37^{-2}\right)^{-1}\left(1-7^{-5}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{1760521}{2100750} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (β) follows in case (a_{3}).
(a_{4}) If $5 \nmid n$ and $7 \nmid n$, then $p_{r} \geqq q_{r+4}$ for $1 \leqq r \leqq k$. As in $\left(a_{2}\right), p_{0} \neq 13$ and hence $p_{0} \geqq 37$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-37^{-2}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{1760521}{2100750} \cdot \zeta(3)
\end{aligned}
$$

Hence, by (A), (β) follows in this case also. Thus (β) is proved.
(b) Suppose n is of the form $36 t+9$. Since $3 \mid n, p_{1}=3$.
(b_{1}) If $5 \mid n$, then $7 \nmid n$ in virtue of the result that $3 \cdot 5 \cdot 7$ does not divide n (proved by Kuhnel, p. 203 of [2]).
($\mathrm{b}_{1.1}$) Suppose $p_{0}=5$.
($\mathrm{b}_{1.1 .1}$) If $11 \mid n$, then $\alpha_{0}=1$ in virtue of the result that $3 \cdot 5^{2} \cdot 11$ does not divide n (proved by Kanold[1, p. 26]). In this case $p_{2}=11$ and $p_{r} \geqq q_{r+3}$ for $3 \leqq r \leqq k$. Further, $\alpha_{2} \geqq 4$. For, if $\alpha_{2}=2$, then $\sigma\left(p_{2}^{\alpha_{2}}\right)=133$ $=7.19$ and since $\sigma(n)=2 n$, it would follow that $7 \mid n$, which is not the case. Also, $\alpha_{1} \geqq 4$. For, if $\alpha_{1}=2$, then $\sigma\left(p_{1}^{\alpha_{1}}\right)=\sigma\left(3^{2}\right)=13 \mid n$ and this implies that

$$
\sum_{p \mid n} \frac{1}{p}>\frac{1}{3}+\frac{1}{5}+\frac{1}{11}+\frac{1}{13}>\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\log \left(\frac{65}{61}\right)
$$

a contradiction to (iii). Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-(\alpha r+1)}\right)^{-1} & <\left(1-5^{-2}\right)^{-1}\left(1-3^{-5}\right)^{-1}\left(1-11^{-5}\right)^{-1} \prod_{r=6}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{318897}{354046} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (γ) follows in this case.
($\mathrm{b}_{1.1 .2}$) Suppose $11 \nmid n$. Then $\alpha_{1} \neq 4$. For, if $\alpha_{1}=4$, then $\sigma\left(p_{1}^{\alpha_{1}}\right)$ $=121=11^{2}$ and since $\sigma(n)=2 n$, it would follow that $11 \mid n$, which is not the case.

Hence, either $\alpha_{1}=2$ or $\alpha_{1} \geqq 6$.
Suppose $\alpha_{1}=2$. Then $\sigma\left(p_{1}^{\alpha_{1}}\right)=13 \mid n$ and in this case both 17 and 19 together do not divide n. For, otherwise, it would follow that

$$
\sum_{p!n} \frac{1}{p}>\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\frac{1}{17}+\frac{1}{19}>\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\log \left(\frac{65}{61}\right)
$$

a contradiction to (iii). Hence

$$
\begin{aligned}
& \prod_{r=0}^{k}\left(1-p_{r}^{-(\alpha r+1)}\right)^{-1}<\left(1-5^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-13^{-3}\right)^{-1}\left(1-17^{-3}\right)^{-1} \\
& \times \prod_{r=9}^{\infty}\left(1-q_{r}^{-5}\right)^{-1}
\end{aligned}
$$

if $17 \mid n, 19 \nmid n$; and

$$
\begin{gathered}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1}<\left(1-5^{-2}\right)^{-1}\left(1-3^{-8}\right)^{-1}\left(1-13^{-3}\right)^{-1}\left(1-19^{-3}\right)^{-1} \\
\times \prod_{r=9}^{\infty}\left(1-q_{r}^{-3}\right)^{-1}
\end{gathered}
$$

if $17 \nmid n, 19 \mid n$; and

$$
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1}<\left(1-5^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-13^{-3}\right)^{-1} \prod_{r=9}^{\infty}\left(1-q_{r}^{-3}\right)^{-1}
$$

if $17 \nmid n, 19 \nmid n$.
Since $1<\left(1-19^{-3}\right)^{-1}<\left(1-17^{-3}\right)^{-1}$, it follows that in all the three cases, we have

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1}< & \left(1-5^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-13^{-3}\right)^{-1}\left(1-17^{-3}\right)^{-1} \\
& \times \prod_{r=9}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
= & \frac{318897}{354046} \cdot \zeta(3) .
\end{aligned}
$$

If $\alpha_{1} \geqq 6$, then

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-5^{-2}\right)^{-1}\left(1-3^{-7}\right)^{-1} \prod_{r=6}^{\infty}\left(1-q_{r}^{-8}\right)^{-1} \\
& <\frac{318897}{354046} \cdot \zeta(3)
\end{aligned}
$$

Hence, by (A), ($\boldsymbol{\gamma}$) follows in the case ($\mathrm{b}_{1.1 .2}$) also.
$\left(\mathrm{b}_{1,2}\right)$ Suppose $p_{0} \neq 5$. Then $p_{2}=5$. In this case, as in $\left(\mathrm{a}_{2}\right), p_{0} \neq 13$. For, otherwise, it would follow that $7 \mid n$, which can not hold. Since p_{0} is of the form $4 \lambda+1, p_{0} \geqq 17 . p_{r} \geqq q_{r+2}$ for $3 \leqq r \leqq k$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-17^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-5^{-3}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{318897}{354046} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (γ) follows in this case also. Thus (γ) is proved.
(b_{2}) Suppose $5 \nmid n$. Since p_{0} is of the form $4 \lambda+1, p_{0} \geqq 13$. Also, $p_{0} \neq 29$. For, otherwise, it would follow as in $\left(a_{2}\right)$ that $\left(1+p_{0}\right) / 2$ $=3 \cdot 5 \mid n$, and this implies that $5 \mid n$, which is not the case.
($\mathrm{b}_{2.1}$) If $7 \mid n$, then $p_{2}=7$.
($\mathrm{b}_{2,1,1}$) Suppose $\alpha_{1}=\alpha_{2}=2$. Then both 13 and 19 divide n, since $\sigma\left(p_{1}^{\alpha_{1}}\right)=13, \sigma\left(p_{2}^{\alpha_{2}}\right)=57=3 \cdot 19$ and $\sigma(n)=2 n$. In this case, neither 11 nor 17 divides n. For, otherwise, it would follow that

$$
\sum_{p!n} \frac{1}{p}>\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+\frac{1}{17}+\frac{1}{19}>\frac{1}{3}+\frac{1}{338}+\log \left(\frac{18}{13}\right)
$$

a contradiction to (iv). Hence, either (1) $p_{0}=13, p_{3}=19, p_{r} \geqq q_{r+5}$ for $4 \leqq r \leqq k$; or (2) $p_{0} \neq 13, p_{3}=13, p_{4}=19, p_{r} \geqq q_{r+4}$ for $5 \leqq r \leqq k$. In the second case, $p_{0} \geqq 37$, since p_{0} is of the form $4 \lambda+1, p_{0} \neq 13,17 \nmid n$ and $p_{0} \neq 29$. In the first case,

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-(\alpha,+1)}\right)^{-1}< & \left(1-13^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-7^{-3}\right)^{-1}\left(1-19^{-3}\right)^{-1} \\
& \times \prod_{r=9}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
= & \frac{1853074104}{2125240975} \cdot \zeta(3) .
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1}< & \left(1-37^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-7^{-3}\right)^{-1}\left(1-13^{-3}\right)^{-1} \\
& \times\left(1-19^{-3}\right)^{-1} \prod_{r=9}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
< & \frac{1853074104}{2125240975} \cdot \zeta(3)
\end{aligned}
$$

($\mathrm{b}_{2.1 .2}$) If at least one of α_{1} and α_{2} is not equal to 2, then either $\alpha_{1} \geqq 4, \alpha_{2} \geqq 4$ or $\alpha_{1} \geqq 4, \alpha_{2}=2$ or $\alpha_{1}=2, \alpha_{2} \geqq 4$. The proofs for the first two cases are omitted as they are similar to the previous proofs. In both these cases, we easily verify that the upper bound obtained for
$\coprod_{p / n p /(p-1)}$ is less than the bound obtained in the third case. In the third case, we have

$$
\begin{aligned}
& \prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} \\
&<\left(1-13^{-2}\right)^{-1}\left(1-3^{-3}\right)^{-1}\left(1-7^{-5}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
&<\frac{1853074104}{2125240975} \cdot \zeta(3) .
\end{aligned}
$$

Hence, by (A), (δ) follows in any case under ($\mathrm{b}_{2,1}$).
($\mathrm{b}_{2.2}$) If $7 \nmid n$, then $p_{r} \geqq q_{r+3}$ for $2 \leqq r \leqq k$. Hence

$$
\begin{aligned}
\prod_{r=0}^{k}\left(1-p_{r}^{-\left(\alpha_{r}+1\right)}\right)^{-1} & <\left(1-3^{-3}\right)^{-1} \prod_{r=5}^{\infty}\left(1-q_{r}^{-3}\right)^{-1} \\
& <\frac{1853074104}{2125240975} \cdot \zeta(3)
\end{aligned}
$$

Hence, by (A), (δ) follows in this case also. Thus (δ) is proved. Thus the proof of the theorem is complete.

References

1. H. J. Kanold, Folgerungen aus dem Vorkommen einer Gauss'schen Primzahl in der Primfaktorenzerlegung einer ungeraden vollkommenen Zahl, J. Reine Angew. Math. 186 (1944), 25-29.
2. U. Kühnel, Verschärfung der notwendigen Bedingungen für die Existenz von ungeraden vollkommenen Zahlen, Math. Z. 52 (1949), 202-211.
3. P. J. McCarthy, Odd perfect numbers, Scripta Math. 23 (1957), 43-47.
4. D. Suryanarayana and N. Venkateswara Rao, On odd perfect numbers, Math. Student 29 (1961), 133-137.
5. D. Suryanarayana, On odd perfect numbers. II, Proc. Amer. Math. Soc. 14 (1963), 896-904.
6. J. Touchard, On prime numbers and perfect numbers, Scripta Math. 19 (1953), 35-39.

Andhra University, Waltair, India

