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1. Introduction. Let X be a partially ordered set (poset) with

respect to a relation ^. We assume, for convenience of notation only,

that X has a greatest element / and a least element O. A net if, D, >-)

in X is monotone increasing (decreasing) iff whenever a>-0 in D,

then /(a) =^/(0) if(B) ^/(a)) in X. A net is said to be monotone if it

is either monotone increasing or monotone decreasing. It is the pur-

pose of this paper to characterize those posets X for which every net

in X has a monotone subnet, and to derive some of their properties.

It is shown that every net in X possesses a monotone subnet iff X

contains no infinite totally unordered subset. This is accomplished

mainly through the use of universal nets (our terminology and nota-

tion for nets are those of Kelley [l]). The theorem is a generalization

of the well-known result of analysis which states that every sequence

of real numbers contains a monotone subsequence. Our results are

then applied to obtain a simple proof of a known theorem on unique

order-compatible topologies for posets (see [6], [7]). Also, it is

shown, that for the same class of posets, one obtains a generalization

of the well-known theorem of Frink's, which states that a lattice is

complete iff it is compact in its interval topology.

2. Principal results. Let us call a net if, D, >-) in X diverse iff when-

ever a>-0 and a 5^0 in D, then/(a) and/(0) are incomparable in X.

The following theorem will be fundamental in establishing our prin-

cipal result.

Theorem 1. Every universal net in a poset X possesses a monotone

subnet or a diverse subnet.

Proof. Let (w, D, >-) be a universal net in X. For each a in D we

decompose X into three mutually disjoint sets as follows:

Ua = {xE X\ x> «(«)},

La = {x E X\x -^ uia)}, and

Na = {x E X\ x and re(a) are incomparable}.

Since u is universal, it follows that for each a in D u is eventually

in one of the above three sets. Accordingly, we decompose D into

the sets
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U = {a E D | u is eventually in Ua],

L = {a E D I u is eventually in La}, and

N = {a £ £> | w is eventually in Aa}.

Since this is, in fact, a decomposition of D, one of the sets U, L, or

N is cofinal in D. We now assert that according as U, L, or N is

cofinal, u possesses an increasing, decreasing, or diverse subnet.

First observe that each of the three cases can be described in the

following general manner: there exists a cofinal subset E of D such

that to each a in £ there is associated a set XaCZ AT which eventual!}-

contains the range of u. We now show that under these conditions

there exists a subnet of u of the form (u, E, >-') and with the property

that whenever «>-'j3 and a 5^/3, then u(<x)EX$. One sees easily that

this is the desired result when given the interpretations above.

Since u is eventually in X$ for each /3 in E, we may choose ip>~P

in D such that a>-ip implies u(a) EX$. Thus if a and /3 are arbitrary

members of E, define a>-' j3 iff a=/3or a>-'i^. Evidently, >-' is a re-

flexive and transitive relation in E. Furthermore, since the identity

mapping from (E, >-') to (D, >-) is isotone and E is cofinal in D, we

need only to prove that >- directs E (cf. [l, p. 70]). But if a and /3

are any members of E there exists 7 in £ such that 7)^ both ia and ip,

since E is cofinal in D. Hence y>-'a and 7>-'/3, completing the proof.

Our main theorem will follow as a consequence of Theorem 1 and

the following lemma.

Lemma. Let (f, D, >-) be a diverse net in X and suppose that (D, >-)

has no greatest member. Then there exists an infinite totally unordered

subset 0/ X contained in the range 0//.

Proof. Select aiED arbitrarily. We shall construct inductively the

desired subset of X. Thus assume we have chosen for i = 1, • • • ,k — l,

elements atED such that {/(a,)|i = 1, • • • , k — l} is a totally un-

ordered subset of X. Now choose akED such that for all i we have

«*>-«.-, cuitT^a,. This is possible since (D, >-) has no greatest member.

Moreover, since/ is diverse, /(ak) is incomparable with each /(a,).

It follows by induction that range(f) contains an infinite totally

unordered subset.

We now have the following theorem.

Theorem 2. Every net in a poset X possesses a monotone subnet if

and only if X contains no infinite totally unordered subset.

Proof. The condition is necessary, for any sequence of pairwise
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incomparable elements of X is a net in X which clearly contains no

monotone subnet.

Since it is well known [l, p. 80] that every net possesses a subnet

which is universal, the sufficiency of the condition will follow if we can

show that every universal net in X has a monotone subnet. Thus let

u be any universal net in X. We may assume that the domain of u

has no greatest member. Then, by Theorem 1, u has either a mono-

tone subnet or a diverse subnet whose domain has no greatest mem-

ber. Since, by the Lemma, the latter is not possible whenever X

possesses no infinite totally unordered subset, it follows that every

universal net in X possesses a monotone subnet, and this completes

the proof.

As an obvious corollary to Theorem 2 we have the following.

Corollary. Every net in a linearly ordered set contains a monotone

subnet.

It is also worth noting that Theorem 2 remains valid if the words

"sequence" and "subsequence" are substituted for the words "net"

and "subnet," respectively.

3. Order-compatible topologies. A subset 5 of X is said to be up-

directed idown-directed) iff for all xSE and y GS there exists zES such

that z^x, z^y (z^x, z^y). Following McShane [4] and Wolk [6]

we call a subset if of X Dedekind-closed iff whenever 5 is an up-

directed subset of if and y = l.u.b. iS), or 5 is a down-directed subset

of if andy = g.l.b.(5), we haveyGif- Let ©denote the topology on X

whose closed sets are the Dedekind-closed subsets of X. We let 6

denote the well-known interval topology on X, which results from

taking as a subbase for the closed sets of X all sets of the form

{xEX\a^xtsb}. E. S. Wolk [6] has introduced and studied the

following notion of an order-compatible topology on a poset, which

seems to be a natural requirement for a topology on X to be harmoni-

ously related to its order structure. A topology 3 on X is said to be

order-compatible iff it satisfies the relation £C3C3D.

The main purpose of this section is to show that one of the principal

results on unique order-compatible topologies for posets can be

deduced rather easily from Theorem 2. We shall have need of the fol-

lowing lemma, which is in essence known: part (i) is essentially

known for the interval topology [l, Problem 2.F] and part (ii) is a

special case of a more general result [6, Lemma 5]. We omit the

routine proofs together with the obvious dual formulations.

Lemma (*). Let f be any monotone increasing net in X. Then
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0) if y = l.u.b. range(/) exists, then/ ^-converges to y, and

(ii) i/y is any ^-cluster point o//, then necessarily y = l.u.b. range(/).

Theorem (Wolk [6] and Naito [5]). I/X is a poset such that every

totally unordered subset 0/ X has cardinality less than Ko, then X

possesses a unique order-compatible topology. Furthermore, X is a Haus-

dorff space with respect to this topology.

Proof. Let X satisfy the hypothesis, and let A" be a ©-closed sub-

set of X. Also, let / be a net in K which ^-converges to an element

yEX. Then we must show that yEK.

By Theorem 2,/ has a monotone subnet, g say, which we take to be

increasing (the other case being handled in the obvious dual manner).

Since subnets of convergent nets converge, and to the same point,

g if-converges to y. Hence, by Lemma (*), y = l.u.b. range(g). More-

over, since range (g) is an up-directed subset of K and K is D-closed,

we must have yEK. Hence K is ^-closed, and it follows that X has

a unique order-compatible topology. Furthermore, since the l.u.b.

of a set is unique, it follows that each net in X converges to at most

one point relative to this topology; that is, the space is Hausdorff.

4. Dedekind completeness. McShane [4] has introduced the fol-

lowing concept of "Dedekind completeness" for posets, which is a

generalization of the usual concept of completeness for lattices. A

poset X is called Dedekind complete iff every up-directed subset of X

has a l.u.b. in X and every down-directed subset has a g.I.b. in X.

Dedekind completeness has been studied and characterized by Wolk

[8] and Kogalovskii [3]. In view of Lemma (*), it is also clear that a

poset X is Dedekind complete iff every monotone net in X con-

verges, relative to some order-compatible topology on X.

It is natural to ask whether the well-known theorem of Frink,

which states that a lattice is complete iff it is ^-compact, can be ex-

tended to Dedekind completeness for posets. That such is not the

case in general can be shown by the following example, due in essence

to Kogalovskii [2]. Let X be the set of images of three infinite se-

quences {ai}, {bj}, and {ck}, and let X be partially ordered as fol-

lows: (i) each of the sequences is a totally unordered subset of X,

(ii) at>bj for i^j, and (iii) bj>ck forj^k (greatest and least elements

may also be adjoined). Then one easily verifies that with this ordering

A is a Dedekind complete poset. However, X is not compact in its

interval topology. In fact, the family {[ait c<]|* = l, 2, • • • } of

closed intervals has a void intersection, whereas the intersection of

each finite subfamily is nonvoid. Thus we see that Dedekind com-
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pleteness does not in general imply compactness in the interval topol-

ogy. However, to determine which of the natural classes of posets

have this property, would be results which are not without interest.

We are able to show the following.

Theorem 3. If X is a poset having no infinite totally unordered sub-

set, then X is Dedekind complete iff it is compact in its 3D topology.

Proof. First suppose X is SD-compact, and let 5 be an up-directed

subset of X. Letting i denote the identity mapping on 5, it is clear

that (i, S, 2;) is a monotone increasing net in X with range(t)=5.

By compactness, i has a cluster point yEX, which, by (ii) of Lemma

(*), must be thel.u.b.(S). Hence l.u.b.(S) exists, and dually for down-

directed subsets of X. Therefore, X is Dedekind complete.

Conversely, suppose X is Dedekind complete and let/ be an arbi-

trary net in X. We shall show that/ has a convergent subnet. By the

hypothesis and Theorem 2, / admits of a monotone subnet g, which

we take to be increasing. Then range (g) is an up-directed subset of X

and hence has a l.u.b. yEX. But then, by (i) of Lemma (*), g must

converge to y with respect to the 2D topology. Similarly if g is decreas-

ing. Therefore X is SD-compact, completing the proof.

Remark. For the 2D topology Theorem 3 is actually the best result

obtainable, since X is SD-compact only if X contains no infinite totally

unordered subset (see [5, Theorem 2] for the details).

The author wishes to express his appreciation to Professor E. S.

Wolk for his interest and assistance.
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