
LITTLEWOOD'S DIOPHANTINE APPROXIMATION
PROBLEM FOR SERIES

T. W. CUS1CK

1. The well-known Diophantine approximation problem of Little-

wood is whether for each pair of real numbers 6, <f> and each e>0

there exists a positive integer n such that

n\\n6\\ \\n<t>\\ < e,

where ||a|| is the absolute value of the difference between a and the

nearest integer.

Let Xbea given field of characteristic zero. If we consider the field

K {t} of formal power series

7 = amr + om-ir-1 + • ■ •

with coefficients in K and define a valuation on K{t} by

I 7 |   = em,

where am^0 and m may be positive, negative, or zero, then there is

an analogue for K{t} of Littlewood's problem for the real numbers.

The field K{t} corresponds to the real numbers, the ring K[t] of

polynomials with coefficients in K corresponds to the rational in-

tegers, and we define the analogue of the distance to the nearest

integer function by ||7||=e~\ where a_i = a_2= ■ • • =a-h+i = 0,

a_A^0.

The analogue of Littlewood's problem was solved by Davenport

and Lewis in [2]. They proved that there exist 9, <j> in K {t} such that

(i) \p\\\pe\\\\p4^^
for all p^O in K[t]. Explicit examples of 6 and <p satisfying (1) with

e-6 in place of e~2 were given in [l], with generalizations relating to

products with an arbitrary number of factors. We prove the following

result, which gives still more information about the analogue of

Littlewood's problem and extensions of it:

Theorem 1. Given an integer q ̂  2, letf(t) be an arbitrary polynomial

of degree at least q in K [i\. Then there exist continuum-many 9 in K {t}

such that

(2) Ul(filWl)llMO)ll=«-'
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far all p^O in K[t].

If we put fit) =t", then Theorem 1 becomes

Theorem 2. Given an integer g^2, there exist continuum-many 6 in

K{t} such that

(3) IplilWpe'W^e-*
t=i

for allp^Oin K[t].

The case q = 2 of Theorem 2 shows that we can take (f> = 82 and still

obtain the inequality (1) for all p^O in K[t].

It is easily seen that the constant er" in Theorems 1 and 2 cannot

be improved. In fact the product in (2) or (3) is fSe_« when p = l, and

indeed for infinitely many p by the analogue for power series of

Minkowski's theorem on linear forms.

We remark also that the condition that K has characteristic zero

can be somewhat relaxed; a more detailed examination of the proofs

shows that it suffices if K contains infinitely many elements and its

characteristic, if it is nonzero, is sufficiently large.

I am grateful to Dr. A. Baker for helpful discussions.

2. It is simplest to prove the case g = 2 of Theorem 2 first, for the

other cases follow from a generalization of that proof. Theorem 1 is

obtained by extending the method of proof of Theorem 2.

We shall prove the existence of

6 = a0 + ait~x + a2tr2 + • • •

such that (3) is satisfied for q = 2 and all pT^O in K[t] by successively

choosing the a.'s. Let

e2 = b0 + bit-1 + b2t~2 + • ■ • ,

so that

bi = aoOi + aiOi-i + ■ • • + a,-ao.

In what follows we regard each a,- as a variable until it has been as-

serted that some fixed value in K has been assigned to it. The use of

the symbol a,- both for a variable and for a value taken by that

variable should, as usual, cause no confusion.

As pointed out in [2], it is easily verified that a necessary and

sufficient condition that (3) hold for q — 2 and for all p?*0 in K[t] is

that the determinants
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ai    ai    • ■ ■ a,+J

a2   a-i    • ■ ■ a<+y+i

at   ai+i • • • a2,-+J_i
(4) 5(,„o = det

Oi    o2    • • • bi+j

b2    bz    • ■ ■ 6t+y+i

6y    bj+i ■ ■ ■ bi+ij-i

be nonzero for each pair i, j with i^Q, j'^0, i+j^l-

In the proof we make use of the following evident relations, true

for each pair i, j specified above:

(5) 5(,-,y) = (— l)'a«+y_i5(i_i,y) +/i,j(a0, ai, ■ ■ ■ , a2,-+y_2)      (i > j),

(6) 5(,-,y) = 2a0a,+2;-i5(,-,,_i) +/i,j(a0, ah ■ ■ ■ , ai+2j-2) (i <j).

Here the/<,y are polynomials in the specified a/s only.

Consider the variables ak occurring in the matrix of 8(,-,y) and call

the variable with largest suffix k the leading variable of 8(,-,,). We

notice that all of the/,-,,- are independent of the leading variables of

their respective 5's.

We begin our selection of the a.'s by taking ao and ai nonzero but

otherwise arbitrary in K. We show that the remaining o.'s can be

chosen appropriately by an inductive argument which depends on

the fact that the coefficient of the highest power of am, viz. ajjj", in

0(m,m) is not zero. In fact this coefficient is +1, as is clear from the

form of the matrix for 8(m,ro) if we notice that the only &,-, 0^i^3m — 1,

which contains am to a power higher than the first is b2m. Since 5(m,m>

contains a term in am alone with nonzero coefficient,

(7) 8a,i) ^ Oasa polynomial in a,- for each i = 1,2, 3, • ■ • ,

irrespective of the values assigned to the other variables in 8,-,,-.

Since a0ai 9^0, also 8(i,o)=ai5^0, 5(o,i) = 2aoai;^0, and 8(i,D=ai ?^0.

We next fix a2 in K in such a way that 8(2|2> ̂0 in its remaining vari-

ables A3, at, a6; this is possible by the case i = 2 of (7).

Now suppose that for some integer n ^ 2 we have chosen ao, ai, • • •,

an in K in such a way that

1. Each 8(<,,) whose leading variable has suffix ^« (i.e., each 8«,o

such that 3i—l^n) is not zero.

2. Each 8(i,i), i^n, whose leading variable has suffix >» is not

identically zero in its remaining variables an+i, a„+i, • • • , a*i-i.
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3. Each 8a,j), i 5^7, whose leading variable has suffix ^w is not

zero.

Our remarks above have established conditions 1, 2 and 3 for re = 2,

so we assume 1, 2 and 3 for re = k^2 and show that we can choose

Ok+i in K in such a way that conditions 1, 2 and 3 hold for re = £ + l.

Condition 1 for n = k + l follows at once from the same statement

for n = k unless k + 1 =32— 1 for some 2. In the latter case we must

choose ajt+i so that fy/.n^O (this is possible by condition 2 with

n = k), i.e. our choice of ak+i must avoid a finite number of values.

Condition 2 for re = £ + l follows from the same statement for n = k

and the fact that, by the case i = k + l of (7), we can choose ak+i in

sucha way that 5(j;+i,*+i)^0 in its remaining variables a/fc+2,a*+3, • • • ,

a3k+2. In order to do this our choice of a^+i must avoid a finite number

of values.

Condition 3 for n = k + l can be satisfied by the same statement for

re = k and (5), (6). For there is only a finite number of 5«,/), i?*j, whose

leading variable is a*+i, and in each of these, by the induction hy-

pothesis and (5) or (6), ak+i appears linearly with a nonzero coeffi-

cient. Thus we need only avoid a finite number of values of ak+i in

order to make each of these 8(,-,y) not zero.

Combining the above statements, we see that provided we avoid

a finite number of values we can fix a&+i in K in such a way that 1, 2

and 3 are satisfied with re = £ + l. Hence by induction we can choose

ao, ai, a2, ••• in K so that 1, 2 and 3 are satisfied for each re = 2, 3,

4, • • • . _

This gives the case q = 2 of Theorem 2 except for the statement that

continuum-many 6 of the required type exist; but, since in the above

we have an infinite number of choices for each a,, the desired state-

ment follows.

3. The above method of proof is easily generalized to give Theorem

2 for the case of arbitrary q. Let 8«(i),<(2),•■•.<(«» be the natural gen-

eralization of 8(ij) in (4), so 5«o),,•(«),...,,-(9)) is the determinant of a

certain matrix whose elements are coefficients of d, d2, • ■ ■ , 6".

We divide the g-tuple subscript 5's into two classes. We put in

class A those 5's whose g-tuple subscript has iik) =maxiSjsg i(j) for

only one value of k. We put in class B all other 5's, i.e. those 5's whose

g-tuple subscript has at least two equal elements bigger than the re-

maining elements.

With the obvious generalization of the definition of leading vari-

able, our induction hypothesis is:

1. Each 5 in class B whose leading variable has suffix ^re is not

zero.
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2. Each 8 in class B with maxiayS9 i(j) 5Sn whose leading variable

has suffix >» is not identically zero in its remaining variables.

3. Each 8 in class A whose leading variable has suffix ^n is not

zero.

For each 8 in class A we have an identity like (5) or (6). Given a 8

in class B, let »» = maxiaySg i(j). Then by considering the coefficient

of the highest power of am in this 8, we see that if aa, Oi, • • • , am_i

have already been chosen so as to satisfy 1, 2 and 3 above for n = m — l,

then the given 8 is not identically zero as a polynomial in am. Thus

for each 8 in class B we obtain an analogue of statement (7).

Using the above remarks, we may proceed with the induction for

the case of general q>2 as in the case q = 2, but with some complica-

tions of notation. This completes the proof of Theorem 2.

4. In proving Theorem 1, we begin with the case q — 2. Suppose

/(t) = cktk + Ck-ifir-1 + • • ■ + co,       ck^0,k^2,

and let

/(») = g(f) + H + bit'1 + bit-2 + ■ ■ ■ ,

where g(t) is a polynomial with zero constant term. Define S('w) to be

8(,,y) with each &,• replaced by bi in (4). Then a necessary and suffi-

cient condition that (2) hold for q = 2 and for all p?^0 in K[t] is that

the determinants b\tJ) be nonzero for each pair i, j with i^O, j^Q,

i+j^l.
We note that bi depends on a0, Oi, • • • , a( and that the only bi,

0^i^3m — l, which contain am to a power higher than the first are

those with i^2m. Therefore (5), (6), and (7) are still true if 8(,-,y) is

replaced by 8'tJ) throughout. Thus the case q = 2 of Theorem 1 may

be proved inductively in the same way as the case q = 2 of Theorem 2.

We need only notice that at the beginning of the induction we must

choose a0 in such a way that ao is not zero and the coefficient of a2

in b{ is not zero (whence a fortiori the coefficient of a2m in b'2m is not

zero for m = l, 2, 3, ■ ■ • ).

The generalization of the proof of Theorem 1 for the case q = 2 to

the proof for general q is carried out in the same way as the corre-

sponding generalization for Theorem 2.

References

1. A. Baker, On an analogue of Littlewood's Diophantine approximation problem,

Michigan Math. J. 11 (1964), 247-250.
2. H. Davenport and D. J. Lewis, An analogue of a problem of Littlewood, Michigan

Math. J. 10(1963), 157-160.

Churchill College, Cambridge, England


