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Let MiG), where G is a locally compact abelian group, denote the

convolution algebra of bounded measures on G. MiG) is a Banach*

algebra. If G is not discrete then there are always maximal ideals in

MiG) which are not symmetric [6, Theorem 2]. The maximal ideals

of MiG) are in one to one correspondence with generalised char-

acters [5] and those corresponding to continuous characters are cer-

tainly symmetric. The same is true of any maximal ideal which is a

limit, in the usual maximal ideal space topology, of maximal ideals

determined by continuous characters. Rudin [2] has asked whether

these are all the symmetric maximal ideals. We shall show that if G

is not discrete then there are always further symmetric maximal

ideals. This result has already been given by Simon [4] for the case

G = R, the additive group of real numbers.

The present results can be deduced from the results in [l ] where we

showed that G has a compact subgroup H such that there is a

pEMiG/H) with the properties

Pi. For any generalised character % on G/H there is a EC and

^EiG/H)" with x» = a^ P almost everywhere in G/H.

Vi. D— {a;aEC,aE[iG/H) ]~}, where a is the constant function

a(i)=o and ~~ indicates o-(£°°(m)> L1(jjl)) closure, contains numbers a

with 0 < I a\ < 1 but { | a\ ; aED } does not contain the whole of (0, 1).

However as the result is of intrinsic interest we first show (Theorem 1)

that it can be improved and applies with G/H replaced by G. In

Theorem 2 we characterise the generalised characters corresponding

to symmetric maximal ideals and the main result then follows.

Theorem 1. Let G be a locally compact abelian nondiscrete group.

Then there is a measure pEMiG) satisfying Pi and P2 iwith G/H

replaced by G).

Proof. Using the result from [l ] described above the present result

follows if we can deduce the existence of a suitable p in MiG) from

the existence of one in MiG/H).

Let XEMiG) he the Haar measure of H and for vEMiG) define

p*E MiG/H) by

f     fdv* =   f fix + H)dvix)
J a/H J g
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for all bounded continuous functions on G/H. It is not difficult to

show that v—>v# is an isometric isomorphism of the ideal X * M(G)

onto M(G/H). Denote the inverse isomorphism by a—*a\>. If

oEM(G/H) then any function gEL1^*), constant on the cosets of H,

can be considered as a function g* on G/H, g*ELl(v) and g* ■ v = (g ■ v\>)$.

Certain results concerning the convolution of measures and func-

tions summable with respect to Haar measure can be carried over to

the convolution of measures in M(H) with functions summable with

respect to vGX * M(G), the proofs being similar, taking into account

that if »»£X * M(G) then also 1^1 GX * M(G). Accordingly we state
without proof

Lemma 1. Let v£X * M(G).

(i) If fEL'(v), o-EM(H) thenf*a ( = ff(s-t)da(t))EL1(v) and
(f-v) * <r= (f * a) -v.

(ii) If a a is a net in M(H) such that <ra—>cr uniformly on equicontinu-

ous sets of functions on H then aa * /—xt */ in Ll(v) norm for each

fELKv).

Now suppose uEM(G/H) satisfying Pi and P2. We shall show that

ut> is the required measure on G. For each open relatively compact

neighbourhood U oi 0 in H find an open relatively compact V such

that V+ VEU and put au = \(V)~2Cv * cv where cv is the characteristic

function of V. Then (c„)*Eh(H^) so that (au)~Ek(H~) and au

= ^,xeu"(fxit)~lauit)d\(t))x, the series converging uniformly in H.

Also by Lemma 1

lim au * (f-ub) = f-u\>.
u

Thus if <p is a multiplicative linear functional on M(G) and fELx(p\,)

then

<b(f-u>) = lim   E  (   f x(t)-1auit)d\it))<t>(x--K)<t>(f-ub).
u    \en~ \J /

Hence if c6(x-X)=0 for all xEH~ then <p(f-p,\,)=0 for all fELl(p.\,),

XM|, = 0 jib almost everywhere and Pi with G/H replaced by G is triv-

ially satisfied. If </>(x-X)^0 for some xoEH~, since the %X (xEH~)

are orthogonal idempotents we have c6(xo-X) = l and <jl>(x-X)=0 for

X^Xo- Thus in this case

<*>(/• mO = 4>(xo-X*/-M-)-

By [3, Theorem 2.1.4], xo can be extended to a continuous char-

acter x on G. Since v—>x-v<> is an  isomorphism  of  M(G/H)  onto
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X-X * MiG), by <ptiv)=<p(x-vi>) the restriction of <p to xX * M(G)

defines a multiplicative linear functional <p# on MiG/H). Hence if

fEL^in,) then

ib(f-in,) = <Kx-a*/-p7)

= ^([x~1-(x-x) */]'•/.)

so that if 8 is the generalised character on G/H corresponding to d>f

and if 0„ = a¥, oGC, ^EiG/H)" then

*(/■,») = a f     [x-^X-X*/)]^^
J a/H

= af x'Ks)  f f(s - t)x(t)dX(t)*(s + B)d»(s)
J a J h

= a f   f x~Ks - t)f(s - t)V(s - I + H)du>(s)dX(t)

= a I     f x~1(x)f(x)^(x + H)dtxv(x)dX(t)
J H-I G

= a I x~Kx)^ix + H)f(x)du\>(x).
•I G

Thus if 6 is the generalised character corresponding to 0 we have

5„b(x) = ax~xix)-9ix + H)

ix\> almost everywhere in G and jui, satisfies Pi.

To show that p\> satisfies P2 we show that the set D defined from

Hi> and G is the set D defined from n and G/H with possibly 0 added.

If x«EiG/H)~ and x«^a in <r(L'in), L^p)) then for fEL1^),

(f*\)tEL1ip) and

f Xaix + H)fix)du>ix)   =    f       Xaif * X)'<fo
J a J g/h

-+a f    (J*\)*dp
J G/H

= a I   fdfib
J G

so that, considering the x« as functions on G, we have x«—>a.

Conversely if x«—*a in aiL^ip./), £1(a">)) then for any/EL1^*)
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f     (x«*Wfdn=  f Xaix)fix + H)duv(x)
J g/h J a

-+a J  f(x + H)dn\>(x)
J a

= a I      fdu.
J G/H

Clearly x« * X = 0 or x«- Considering an fEL1(u) with ffdp.9^0 we see
that if a;^0 there is a p1 such that for a>8 X* * X = x<i and for these

values of a, (x„ * X)' = (xJ# E (G/H) * and fG/H(xa)*fdu^>affdu ior
all /GLHm).

Theorem 2. JT^e generalised character x corresponds to a symmetric

maximal ideal if and only if for each aEM(G) with a = a* we have

X*(s) = [x*(-s)]~

a almost everywhere in G.

Proof. Suppose x corresponds to a symmetric ideal. Then if <r = cr*

we have, for a\\fELx(a), (/•<r)*=/*-<r, where f*(t) =[f(-t)]~, and so

fx*fdv = (j'x.f*d<rS\

= / [x«(-t)Yf(t)dc(t).

Since this holds for all fELl(<r) we have x^is) = [x,( — s)]~ ior a

almost all 5 in G. Conversely if vEM(G) and the generalised char-

acter x satisfies x°is) = Lx<r( — s)]~ then put <r= \v\ +\v\ * so that

a = a*, v=f-a and v*=f*-a where f, f*EL1 (a). We then have

j xjfo = [J k.(-*)l-[/(-*)h<fc(*)]

that is fx<rdv= [Jx°dv*Y~ so that the multiplicative linear functional

and hence the ideal are symmetric.

Theorem 3. Af(G) has symmetric maximal ideals which do not lie

in (G")~.

Proof. Take u as in Theorem 1 and let oG^ with0< |a| <l.Then,
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since the maximal ideal space of MiG) is compact we can find a

generalised character x in (G')~ with Xn = a- The maximal ideal cor-

responding to x is clearly symmetric so that, by Theorem 2, Xc(s)

= [xv( — s)]~ for cr = cr*. For positive real a, | x| " is a generalised char-

acter on G corresponding to a symmetric maximal ideal and |x*i|a

= aal. By a suitable choice of a we have \a\ aED and hence a sym-

metric maximal ideal not in (G )~.
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