CONVEXITY AND MINIMAL GERSCHGORIN SETS!
B. W. LEVINGER

1. The Gerschgorin circle theorem gives bounds for the eigenvalues
of an # X7 complex matrix 4 = (a;,;) in terms of the diagonal elements
and the moduli of the off-diagonal elements. Thus these bounds apply
equally well to any matrix in the class

(1) Q= {B= (bij)| bsi = aiiy | b:i] = |ais|, 1 24,5 < n}.

The problem of how to determine all eigenvalues of matrices in Q4
was solved by R. S. Varga and the author [6], [4] by the introduction
of minimal Gerschgorin sets, G*(f4), to be defined in §3.

The original proofs depended strongly upon the Perron-Frobenius
theory of nonnegative matrices. In this note, we give a new derivation
of the main results of [4] using a lemma of V. Klee on convex sets [3].

I am indebted to D. E. Bzowy for the proof of Theorem 2.

2. In real n-dimensional space R, we define the following subsets.

(2) H

Zx,-=1,x.~go,1gi§n},

i=1

{XE R,

3) 0, ={xEH|x=0}, 1=Zj=Zn

Given n? constants ¢;;=0, 151, j<n, let

4) M;;= {X € H|cijw; £ ), Ci.kxk} , 154, S n,
pey
(5) S,~=ﬂM,~,,~, léjén

=1
The sets H, Q;, S;, M. ; are compact convex sets in R, and, for all
i, j=1,--,n,
(6) Q; CS; C M,
We give two theorems relating the sets S;, M, ;, and H.

THEOREM 1. Let ¢ be any permutation of the integers 1, - - -, n. Then
the following conditions are equivalent:

Q) N Misey # I,
=1
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(8) U M;,¢(;) = H
=1

Proor. (7) implies (8): Let y&H and z&EN}_, M, 4. We may
assume that y#z, and choose % such that min,=o ¥:/2:=Yew/2sk)
=A<1. Then y=(1—-N)"1(y —Az) is in H and Js4)=0. Thus §E Qs
C My 4, and, since My 4 is convex, y = (1 =N)y+rz2&E My s)-

(8) implies (7): This is a consequence of the following lemma of
V. Klee [3]: If (j+1) closed convex sets in R, have convex union and
any j have a common point, then there is a point common to all. By as-
sumption U}_, M; 4 =H which is convex, and from (6) Ni<; M; (i)
DNix; Qpiy =S, so that any (n—1) sets M, 4 have nonempty
intersection. Thus NP_; M; 4 = .

THEOREM 2. The following three conditions are equivalent:
(9) H=Uj-1 S
(10) Nigiisn Mij = .

(11) For any permutation ¢ of 1, - - - | n,
H = U Mi,¢(;).
i=1

ProoF. (9) implies (10): The #z closed convex sets .S; have convex
union H. Any (n—1) of the S; have a common point, since by (6),
B #Njx; Q,CN;j=; S;. Thus by Klee's lemma, F#N_;S;
= nlgi,jgn Mi,j-

(10) implies (11): This follows immediately from Theorem 1.

(11) implies (9): If H=U}., S;, then 3x&H such that x&S;, for
j=1, - - -, n. Consequently, for each j=1, - - -, #, we can find ¢(5)
such that x& My ,;, or by (4) that cy¢y,%; > D ki Cotiy 4%k From this,
it follows that, for each j=1, - - -, n and k#j, xE My and thus,
that if k%7, ¢ (k) #¢(j). Hence ¢ is a permutation and x&Uj-, Ms¢).i
contradicting (11).

It can be shown that, if H=U}-, S;, the permutation ¢ constructed
above such that H=Uj.; M, ,; is unique [5, Theorem 4].

Theorems 1 and 2 may be generalized to apply to sets of the form

@) M;= {x € H|cijixi S 2. Ci.i.kxk} y, 1=4j5=mn
kstj

where ¢;;,20, 1514, j, k<n, provided

(12) Ci,j,i%; > Z Cs,5,1%1 implles Ci k kXK é Z Cik,1%1

17 =k



1968] CONVEXITY AND MINIMAL GERSCHGORIN SETS 23
for any 7, j=1, - - -, n and kj. The proofs for the general case are
identical.

3. We briefly recall some definitions from [4]. For any complex
matrix 4, let Q4 be given by (1) and

(13) S(Q4) = {zl det(zI — B) = 0 for some B & QA}.

If ¢ is any permutation of 1, - - -, # and x& H, we define

a  clw={r

l d»’.¢<i)—05¢.¢m| Ty = E I ai.i—'”86.j| x:’} ’

I=d(3)
1=1=mn,
(15) ¢ = UG,
$=1
(16) G*(Qa) = N G*(x).
xcH

The main results of [4] were a characterization of G*(Q4) and a
proof that

a1 S(Q4) = N G*(Q).

¢

The former is a simple consequence of Theorem 1 and we will derive
the latter from Theorem 2.

THEOREM 3. 0 EG*(Q4) ifand onlyif 3xE Hsuchthat, fori=1, - - - ,n,

(18) | Gisty — 0Bisnr| B = 25 | @i — odis| %
i ()
Proor. For any 7, j=1, - - -, n, let

(19) M, () = {X E H||ai;— odij| 25 = 2| aix — adin xk} .

k#%j

By (14), (15), for any x€ H, ¢ ©G?(x) if and only if x&E M, 4 (o),
and ¢ EG*(x) is equivalent to x& U, M; 4 (). Thus, s EG*(Qa)
=Nger G*(x) if and only if UJ; M, 4 (¢)=H, which is equivalent
to Ni_y M. 45(0) =, by Theorem 1. This completes the proof of
our theorem, which is equivalent to Theorem 1 of [4].

To prove (17), we first give a characterization of S(Q4).

LEMMA. ¢ €S(Q4) of and only if AxEH such that, for 1=4, j <n,

(20) la;; — 05m’l x; = ZI i — UB.',kl L.
Py
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Proor. ¢&S(Q4) if and only if 3B&EQ, and y 0, such that
(B—oal)y =0. Taking components and using the definition (1) of 4,
we obtain, for 1=<j=<n,

0 =2 (bix — 00y = 2. | ain — o8| | x| exp(i6;.0),
k=1 k=1
where the 0;,;, are real numbers and 0; ;=0, 1 <7, k<#n. Thus for each
j=1, - - -, n, the » complex numbers,

Nim = 2| @ik — obin| | e exp(ibin), m=1,---,n,
k=1

form the vertices of a closed polygon in the complex plane with sides
ajp= Iaj,k—aé,-,k”ykl. It is well known that, given any set of # non-
negative numbers ay, - - -, a, there exists a closed polygon with sides
a, if and only if no oy exceeds the sum of the others, a;,< D, aa; for
k=1, ---,n [5 Lemma 5]. Thus ¢ &€S(Q4) if and only if 3y=0,
such that a; ;= Zj#k a; i, for 154, k<n. This is equivalent to (20)
with x;= Iyi‘/zz;l kal yJj=1 -, n

THEOREM 4. S(Q4) =NyG*(Q4).

ProoF. From the lemma and (19), ¢&S(Q4) is equivalent to
Mig.ijsn M;; (0)~ . By Theorem 2, this is equivalent to H
= Ur, M; 4:(a), for each permutation ¢ of 1, - - -, »#, which, in turn
is equivalent to ¢ €G*(Q4), for each ¢, or s ENG*(Q4).

If 6. S(Q4), then there exists a permutation ¢ such that e €FG¥(224)
and H> U}, M, 4»(c). By a remark following Theorem 2, ¢ is the
only permutation for which this can occur. Consequently, since the
G*(Q4) are closed, the boundary of S(Q4) is the union of the bound-
aries of the sets G#(Q4), which implies Corollary 1 of [4].

These results may be extended. If, for 1=4,j <n,

(21) H.',j(o) = {x E H! l l a‘l (—1)5&1‘5,',,' + a.-,,-l Xj

= Z' I O'I (—=1)%.46:x + di,kl xk}

kg

then condition (12) is satisfied. The generalizations of Theorems 1 and
2 then imply analogues of Theorems 3 and 4, for matrices in the set

(]

(22) 9A={B=(bi,j)||bi,j| = |a.~,;|,1§i,j§n}.

This yields the main results of [5].
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It is also possible to prove the analogue of Theorem 3, for Gersch-
gorin sets with partitionings [1], [2] using a similar argument. How-
ever, in this case, there is no analogue to the lemma characterizing
S(Q4) and the extension of Theorem 4 is not generally true. The best
results for this case have been given by Johnston [2].
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