
CONVEXITY AND MINIMAL GERSCHGORIN SETS1
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1. The Gerschgorin circle theorem gives bounds for the eigenvalues

of an nXn complex matrix A = (aj,,-) in terms of the diagonal elements

and the moduli of the off-diagonal elements. Thus these bounds apply

equally well to any matrix in the class

(1) nA = {B = (bi,,) | bi.i = a,-,,-, | bij\  =  | aij\ , 1 ^ i,j ^ »}.

The problem of how to determine all eigenvalues of matrices in Ua

was solved by R. S. Varga and the author [6], [4] by the introduction

of minimal Gerschgorin sets, G*(Q^), to be defined in §3.

The original proofs depended strongly upon the Perron-Frobenius

theory of nonnegative matrices. In this note, we give a new derivation

of the main results of [4] using a lemma of V. Klee on convex sets [3].

I am indebted to D. E. Bzowy for the proof of Theorem 2.

2. In real w-dimensional space Rn we define the following subsets.

(2) H =  jx E Rn   £ «i = 1, *< = 0, 1 ^ * ^ n\ ,

(3) Q, = {xEH\xj = 0},       l^j^n.

Given n2 constants e,-,,-Si0, l^i,j^n, let

(4) Mi,j =  <xGr7| ajXj g 23 Ci,kXk> ,        1 ^ i,j ^ ra,

71

(5) Sj = fi Mi,j,        1 ^ j ^ n.
i=l

The sets H, Qj, Sj, M,-,,-, are compact convex sets in Rn and, for all

i,j=l, ■ ■ ■ , n,

(6) Qj C Sj C Mu.

We give two theorems relating the sets Sj, Mij, and H.

Theorem 1. Let <p be any permutation o/ the integers 1, • • • , n. Then

the /allowing conditions are equivalent:

n

(7) n iitMi> * 0,
i=l
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n

(8) U MiMti = H.
1=1

Proof. (7) implies (8): Let yEH and zEW-i MiMi). We may

assume that y^z, and choose k such that minj^o 3'i/z» = 3'*(*)/z*(*)

= X<1. Theny=(l—X)_1(y—Xz) is in 22 and y*(*) = 0. Thus yEQ*m
EMkMk), and, since Afi,0(t) is convex, y= il—\)y+\zEMkMk).

(8) implies (7): This is a consequence of the following lemma of

V. Klee [3]: If (j+1) closed convex sets in Rn have convex union and

any j have a common point, then there is a point common to all. By as-

sumption (J"=i Mi.4,a)=H which is convex, and from (6) fl,-*,- Mt,^i)

~Dfli*j Q<W)'£0> so that any (« — 1) sets Mt.w) have nonempty

intersection. Thus D?=1 Mi.^i)9£0.

Theorem 2. The following three conditions are equivalent:

(9) H =u;.i5y.
(10) Cllsi.jznMi.j7i0.

(11) For awy permutation (p of 1, • • • , «,

n

22 = U MiMil.
i=l

Proof. (9) implies (10): The n closed convex sets S3- have convex

union H. Any (m—1) of the Sj have a common point, since by (6),

0^ flj^i Q3EClj^i Sj.     Thus     by     Klee's     lemma,     0^f1"=1Sy

= ' llS«',ysn  Mi.j.

(10) implies (ll): This follows immediately from Theorem 1.

(11) implies (9): If 22^U?=i S3, then BxEH such that xESj, for
j—1, ■••,». Consequently, for each j = l, • • • , n, we can find </>(/)

such that xEM*U),i< or by (4) that c^j),3Xj> zZ**J c*o).*x*. From this,

it follows that, for each j=l, ■ ■ ■ , n and £^.7, xGAf*(,•>,* and thus,

that if fej^j, 4>ik) y^qbij). Hence 4> is a permutation and x(£U"-i -^<M/),y

contradicting (11).

It can be shown that, if H^Uj-i Sj, the permutation d> constructed

above such that H=*U"=i -W*«)./ is unique [5, Theorem 4].

Theorems 1 and 2 may be generalized to apply to sets of the form

(4')      Mi.j = \x E H\ Ci.j.jX, ̂ X) Cij.kxS ,        1 ^ i,j ^ n,
\ k*j )

where c,-,y,*^0, l-—i,j, k = n, provided

(12) CijjXj > zZ d.i.ixt   implies   e*,*,*** ̂ ^ d.t.iXi
W M*
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for any i, j = 1, • • • , n and k -^j. The proofs for the general case are

identical.

3. We briefly recall some definitions from [4]. For any complex

matrix A, let Ua be given by (1) and

(13) S(QA) = {z | det(z/ - B) = 0    for some BE^a}.

If <p is any permutation of 1, • • • ,n and xEH, we define

(14) G,-(x)= <<r   | ajl0(j)— <r5,-.*(i)| «*(,•>^   X)   I «*,,— <r5.-,, | x,-> ,
t   I j>«(») '

1 ^ i ^ »,

(15) G\x) = U G*(x),
j-i

(16) 0(Q4) = 0 G*(x).

The main results of [4] were a characterization of G+CQa) and a

proof that

(i7) s(qa) = n G*(SlA).

The former is a simple consequence of Theorem 1 and we will derive

the latter from Theorem 2.

Theorem3. aEG*(Q,A)i/andonlyi/BxEHsuchthat,/ori=l, ■ ■ ■ ,n,

(18) I flj,0(i) — <r5,-,0(j) I x0(j) g    23    I ai.i ~ <rbi.i\ xi-

Proof. For any i, j = l, • • • , n, let

(19) Mi,j(a) =  <x E H    | ffli.i — <r5j,,-| */ ^ 23 I a,-,* — aOi,k \ Xk> .
1 k*j J

By (14), (15), for any xEH, aEGf(x) if and only if xEMiMi)(a),

and aEG't,(x) is equivalent to x£ U?=j MiA{i)(a). Thus, ffGG+(Qi)

= ^xes<^*(x) if and only h° UJL, Mii<Hi)(a)=H, which is equivalent

to D"=1 Mi^(i)(a)j^0, by Theorem 1. This completes the proof of

our theorem, which is equivalent to Theorem 1 of [4].

To prove (17), we first give a characterization of S(Ua).

Lemma. aES(UA) i/and only i/ 3xEH such that, /or l^i, j :£«,

(20) I a,-,,- — abi,j | Xj si 23 I a»',* — <r5»'.* I x*-
k*j
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Proof. oESittA) if and only if bBE&a and y^O, such that

iB—aI)y = 0. Taking components and using the definition (1) of Ha,

we obtain, for 1 gj5=M,
n n

0 = zZ 0>i,k - vbj,k)yk = zZ I ai,k — <r&i,k | | y* | exp(%,i),
*=1 4=1

where the 6j,k are real numbers and 6j,j = 0, 1 ̂ j, k^n. Thus for each

j=l, ■ ■ ■ , n, the n complex numbers,

wi

^i.m = ]C I ai.k — abj.k \\y*\ exp(^y,*),        rn = 1, ■ • • , n,
fc=i

form the vertices of a closed polygon in the complex plane with sides

ai.k— | ctj.k — obj.k\\yk\. It is well known that, given any set of n non-

negative numbers ai, ■ ■ ■ , a„, there exists a closed polygon with sides

aK if and only if no ak exceeds the sum of the others, aA:£ zZi^kdj for

k = l, ■ • ■ , n [5, Lemma 5]. Thus oES^Ia) if and only if 3y^0,

such that a3-.k^ zZi*kai.i> f°r 1 = J> k — n. This is equivalent to (20)

withxj=\yj\/zZt=i |y*|,j=l. •••,»•

Theorem 4. 5(B.1) = n0G*(fiA).

Proof. From the lemma and (19), aESi&A) is equivalent to

His,i.jsn Mi.j (<r) 9^0. By Theorem 2, this is equivalent to H

= U?_i Mi.w)io-), for each permutation d> of 1, • • • , n, which, in turn

is equivalent to aEG^i^A), for each </>, or o-Gfl^G*(fii).

If oESi^A), then there exists a permutation i^ such that vEG^^a)

and 22?^ UJ1.! Af,,^(i)(<r). By a remark following Theorem 2, i/' is the

only permutation for which this can occur. Consequently, since the

G*iHA) are closed, the boundary of 5(Q^) is the union of the bound-

aries of the sets G*(fl^), which implies Corollary 1 of [4].

These results may be extended. If, for l^i,j ^n,

(21) Mi.jia) =   lx E H   | | o | i-l)h.i0i,3 + ai., | x}

^ X) I I o-1 (- ly^Si.k + at,k | xk>
k*j I

then condition (12) is satisfied. The generalizations of Theorems 1 and

2 then imply analogues of Theorems 3 and 4, for matrices in the set

(22) Q°A = \B = ibi,3) | | bi,j\  =  | a^, 1 = i,j g »}.

This yields the main results of [5].
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It is also possible to prove the analogue of Theorem 3, for Gersch-

gorin sets with partitionings [l], [2] using a similar argument. How-

ever, in this case, there is no analogue to the lemma characterizing

S(Ua) and the extension of Theorem 4 is not generally true. The best

results for this case have' been given by Johnston [2].

Bibliography

1. D. Feingold and R. S. Varga, Block diagonally dominant matrices and generaliza-

tions of the Gerschgorin circle theorem, Pacific J. Math. 12 (1962), 1241-1250.

2. R. L. Johnston, Block generalizations of some Gerschgorin-type theorems, Ph.D.

Thesis, Case Institute of Technology, Cleveland, Ohio, 1965.

3. V. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3

(1961), 272-275.
4. B. W. Levinger and R. S. Varga, Minimal Gerschgorin sets. II, Pacific J. Math.

17 (1966), 199-210.

5. -, On a problem of O. Taussky, Pacific J. Math 19 (1966), 473-487.
6. R. S. Varga, Minimal Gerschgorin sets, Pacific J. Math. 15 (1965). 719-729.

Case Institute of Technology


