CONVEXITY AND MINIMAL GERSCHGORIN SETS1

B. W. LEVINGER

1. The Gerschgorin circle theorem gives bounds for the eigenvalues of an $n \times n$ complex matrix $A = (a_{i,j})$ in terms of the diagonal elements and the moduli of the off-diagonal elements. Thus these bounds apply equally well to any matrix in the class

$$(1) \quad \Omega_A = \{ B = (b_{i,j}) \mid b_{i,i} = a_{i,i}, \mid b_{i,j} \mid = \mid a_{i,j} \mid , 1 \leq i, j \leq n \}.$$

The problem of how to determine all eigenvalues of matrices in Ω_A was solved by R. S. Varga and the author [6], [4] by the introduction of minimal Gerschgorin sets, $G^{\phi}(\Omega_A)$, to be defined in §3.

The original proofs depended strongly upon the Perron-Frobenius theory of nonnegative matrices. In this note, we give a new derivation of the main results of [4] using a lemma of V. Klee on convex sets [3].

I am indebted to D. E. Bzowy for the proof of Theorem 2.

2. In real *n*-dimensional space R_n we define the following subsets.

(2)
$$H = \left\{ \mathbf{x} \in R_n \middle| \sum_{i=1}^n x_i = 1, x_i \geq 0, 1 \leq i \leq n \right\},$$

(3)
$$Q_j = \{ \mathbf{x} \in H \mid x_j = 0 \}, \quad 1 \leq j \leq n.$$

Given n^2 constants $c_{i,j} \ge 0$, $1 \le i, j \le n$, let

$$(4) M_{i,j} = \left\{ \mathbf{x} \in H \mid c_{i,j} x_j \leq \sum_{k \neq i} c_{i,k} x_k \right\}, 1 \leq i, j \leq n,$$

$$(5) S_j = \bigcap_{i=1}^n M_{i,j}, 1 \leq j \leq n.$$

The sets H, Q_j , S_j , $M_{i,j}$, are compact convex sets in R_n and, for all $i, j=1, \dots, n$,

$$Q_j \subset S_j \subset M_{i,j}.$$

We give two theorems relating the sets S_j , $M_{i,j}$, and H.

THEOREM 1. Let ϕ be any permutation of the integers 1, \cdots , n. Then the following conditions are equivalent:

(7)
$$\bigcap_{i=1}^{n} M_{i,\phi(i)} \neq \emptyset,$$

Received by the editors October 23, 1966.

¹ This research was supported in part by NSF Grant GP-5553.

PROOF. (7) implies (8): Let $\mathbf{y} \in H$ and $\mathbf{z} \in \bigcap_{i=1}^n M_{i,\phi(i)}$. We may assume that $\mathbf{y} \neq \mathbf{z}$, and choose k such that $\min_{\mathbf{z}_i \neq 0} y_i/z_i = y_{\phi(k)}/z_{\phi(k)} = \lambda < 1$. Then $\tilde{\mathbf{y}} = (1 - \lambda)^{-1}(\mathbf{y} - \lambda \mathbf{z})$ is in H and $\tilde{\mathbf{y}}_{\phi(k)} = 0$. Thus $\tilde{\mathbf{y}} \in Q_{\phi(k)} \subset M_{k,\phi(k)}$, and, since $M_{k,\phi(k)}$ is convex, $\mathbf{y} = (1 - \lambda)\tilde{\mathbf{y}} + \lambda \mathbf{z} \in M_{k,\phi(k)}$.

(8) implies (7): This is a consequence of the following lemma of V. Klee [3]: If (j+1) closed convex sets in R_n have convex union and any j have a common point, then there is a point common to all. By assumption $\bigcup_{i=1}^n M_{i,\phi(i)} = H$ which is convex, and from (6) $\bigcap_{i\neq j} M_{i,\phi(i)}$ $\bigcap_{i\neq j} Q_{\phi(i)} \neq \emptyset$, so that any (n-1) sets $M_{i,\phi(i)}$ have nonempty intersection. Thus $\bigcap_{i=1}^n M_{i,\phi(i)} \neq \emptyset$.

THEOREM 2. The following three conditions are equivalent:

- $(9) H = \bigcup_{i=1}^{n} S_{i}.$
- (10) $\bigcap_{1 \leq i,j \leq n} M_{i,j} \neq \emptyset$.
- (11) For any permutation ϕ of $1, \dots, n$,

$$H = \bigcup_{i=1}^{n} M_{i,\phi(i)}.$$

PROOF. (9) implies (10): The *n* closed convex sets S_j have convex union H. Any (n-1) of the S_j have a common point, since by (6), $\emptyset \neq \bigcap_{j\neq i} Q_j \subset \bigcap_{j\neq i} S_j$. Thus by Klee's lemma, $\emptyset \neq \bigcap_{j=1}^n S_j = \bigcap_{1\leq i,j\leq n} M_{i,j}$.

- (10) implies (11): This follows immediately from Theorem 1.
- (11) implies (9): If $H \neq \bigcup_{j=1}^n S_j$, then $\exists \mathbf{x} \in H$ such that $\mathbf{x} \notin S_j$, for $j=1, \dots, n$. Consequently, for each $j=1, \dots, n$, we can find $\phi(j)$ such that $\mathbf{x} \notin M_{\phi(j),j}$, or by (4) that $c_{\phi(j),j}x_j > \sum_{k\neq j} c_{\phi(j),k}x_k$. From this, it follows that, for each $j=1, \dots, n$ and $k\neq j$, $\mathbf{x} \in M_{\phi(j),k}$ and thus, that if $k\neq j$, $\phi(k)\neq\phi(j)$. Hence ϕ is a permutation and $\mathbf{x} \notin \bigcup_{j=1}^n M_{\phi(j),j}$ contradicting (11).

It can be shown that, if $H \neq \bigcup_{j=1}^{n} S_{j}$, the permutation ϕ constructed above such that $H \neq \bigcup_{j=1}^{n} M_{\phi(j),j}$ is unique [5, Theorem 4].

Theorems 1 and 2 may be generalized to apply to sets of the form

$$(4') \quad \overline{M}_{i,j} = \left\{ x \in H \mid c_{i,j,j}x_j \leq \sum_{k \neq j} c_{i,j,k}x_k \right\}, \quad 1 \leq i,j \leq n,$$

where $c_{i,j,k} \ge 0$, $1 \le i, j, k \le n$, provided

$$(12) c_{i,j,j}x_j > \sum_{l \neq j} c_{i,j,l}x_l implies c_{i,k,k}x_k \leq \sum_{l \neq k} c_{i,k,l}x_l$$

for any $i, j=1, \dots, n$ and $k \neq j$. The proofs for the general case are identical.

3. We briefly recall some definitions from [4]. For any complex matrix A, let Ω_A be given by (1) and

(13)
$$S(\Omega_A) = \{ z \mid \det(zI - B) = 0 \text{ for some } B \in \Omega_A \}.$$

If ϕ is any permutation of 1, \cdots , n and $x \in H$, we define

(14)
$$G_{i}^{\phi}(\mathbf{x}) = \left\{ \sigma \middle| \mid a_{i,\phi(i)} - \sigma \delta_{i,\phi(i)} \middle| x_{\phi(i)} \leq \sum_{j \neq \phi(i)} \middle| a_{i,j} - \sigma \delta_{i,j} \middle| x_{j} \right\},$$

$$1 \leq i \leq n,$$

(15)
$$G^{\phi}(\mathbf{x}) = \bigcup_{i=1}^{n} G_{i}^{\phi}(\mathbf{x}),$$

(16)
$$G^{\phi}(\Omega_{\mathbf{A}}) = \bigcap_{\mathbf{x} \in H} G^{\phi}(\mathbf{x}).$$

The main results of [4] were a characterization of $G^{\phi}(\Omega_A)$ and a proof that

(17)
$$S(\Omega_{\mathbf{A}}) = \bigcap_{\mathbf{A}} G^{\phi}(\Omega_{\mathbf{A}}).$$

The former is a simple consequence of Theorem 1 and we will derive the latter from Theorem 2.

THEOREM 3. $\sigma \in G^{\phi}(\Omega_A)$ if and only if $\exists x \in H$ such that, for $i = 1, \dots, n$,

(18)
$$\left| a_{i,\phi(i)} - \sigma \delta_{i,\phi(i)} \right| x_{\phi(i)} \leq \sum_{i \neq \phi(i)} \left| a_{i,j} - \sigma \delta_{i,j} \right| x_{j}.$$

PROOF. For any $i, j = 1, \dots, n$, let

(19)
$$M_{i,j}(\sigma) = \left\{ \mathbf{x} \in H \middle| \left| a_{i,j} - \sigma \delta_{i,j} \right| x_j \leq \sum_{k \neq i} \left| a_{i,k} - \sigma \delta_{i,k} \right| x_k \right\}.$$

By (14), (15), for any $\mathbf{x} \in H$, $\sigma \in G_i^{\phi}(\mathbf{x})$ if and only if $\mathbf{x} \in M_{i,\phi(i)}(\sigma)$, and $\sigma \in G^{\phi}(\mathbf{x})$ is equivalent to $\mathbf{x} \in \bigcup_{i=1}^n M_{i,\phi(i)}(\sigma)$. Thus, $\sigma \in G^{\phi}(\Omega_A) = \bigcap_{\mathbf{x} \in H} G^{\phi}(\mathbf{x})$ if and only if $\bigcup_{i=1}^n M_{i,\phi(i)}(\sigma) = H$, which is equivalent to $\bigcap_{i=1}^n M_{i,\phi(i)}(\sigma) \neq \emptyset$, by Theorem 1. This completes the proof of our theorem, which is equivalent to Theorem 1 of [4].

To prove (17), we first give a characterization of $S(\Omega_A)$.

LEMMA. $\sigma \in S(\Omega_A)$ if and only if $\exists \mathbf{x} \in H$ such that, for $1 \leq i, j \leq n$, $|a_{i,j} - \sigma \delta_{i,j}| x_j \leq \sum_{k \neq i} |a_{i,k} - \sigma \delta_{i,k}| x_k.$

PROOF. $\sigma \in S(\Omega_A)$ if and only if $\exists B \in \Omega_A$ and $y \neq 0$, such that $(B - \sigma I)y = 0$. Taking components and using the definition (1) of Ω_A , we obtain, for $1 \leq j \leq n$,

$$0 = \sum_{k=1}^{n} (b_{j,k} - \sigma \delta_{j,k}) y_k = \sum_{k=1}^{n} |a_{j,k} - \sigma \delta_{j,k}| |y_k| \exp(i\theta_{j,k}),$$

where the $\theta_{j,k}$ are real numbers and $\theta_{j,j} = 0$, $1 \le j$, $k \le n$. Thus for each $j = 1, \dots, n$, the *n* complex numbers,

$$\lambda_{j,m} = \sum_{k=1}^{m} |a_{j,k} - \sigma \delta_{j,k}| |y_k| \exp(i\theta_{j,k}), \qquad m = 1, \cdots, n,$$

form the vertices of a closed polygon in the complex plane with sides $\alpha_{j,k} = |a_{j,k} - \sigma \delta_{j,k}| |y_k|$. It is well known that, given any set of n nonnegative numbers $\alpha_1, \dots, \alpha_n$, there exists a closed polygon with sides α_k if and only if no α_k exceeds the sum of the others, $\alpha_k \leq \sum_{j \neq k} \alpha_j$ for $k = 1, \dots, n$ [5, Lemma 5]. Thus $\sigma \in S(\Omega_A)$ if and only if $\exists y \neq 0$, such that $\alpha_{j,k} \leq \sum_{j \neq k} \alpha_{j,i}$, for $1 \leq j, k \leq n$. This is equivalent to (20) with $x_j = |y_j| / \sum_{k=1}^n |y_k|, j=1, \dots, n$.

Theorem 4. $S(\Omega_A) = \bigcap_{\phi} G^{\phi}(\Omega_A)$.

PROOF. From the lemma and (19), $\sigma \in S(\Omega_A)$ is equivalent to $\bigcap_{1 \le i, i, j \le n} M_{i,j}(\sigma) \ne \emptyset$. By Theorem 2, this is equivalent to $H = \bigcup_{i=1}^n M_{i,\phi(i)}(\sigma)$, for each permutation ϕ of $1, \dots, n$, which, in turn is equivalent to $\sigma \in G^{\phi}(\Omega_A)$, for each ϕ , or $\sigma \in \bigcap_{\phi} G^{\phi}(\Omega_A)$.

If $\sigma \in S(\Omega_A)$, then there exists a permutation ψ such that $\sigma \in G^{\psi}(\Omega_A)$ and $H \neq \bigcup_{i=1}^n M_{i,\psi(i)}(\sigma)$. By a remark following Theorem 2, ψ is the only permutation for which this can occur. Consequently, since the $G^{\phi}(\Omega_A)$ are closed, the boundary of $S(\Omega_A)$ is the union of the boundaries of the sets $G^{\phi}(\Omega_A)$, which implies Corollary 1 of [4].

These results may be extended. If, for $1 \le i, j \le n$,

$$(21) \quad \overline{M}_{i,j}(\sigma) = \left\{ x \in H \middle| \left| \middle| \sigma \middle| (-1)^{\delta_{i,j}} \delta_{i,j} + a_{i,j} \middle| x_j \right.$$

$$\leq \sum_{k \neq j} \left| \middle| \sigma \middle| (-1)^{\delta_{i,j}} \delta_{i,k} + a_{i,k} \middle| x_k \right\}$$

then condition (12) is satisfied. The generalizations of Theorems 1 and 2 then imply analogues of Theorems 3 and 4, for matrices in the set

(22)
$$\Omega_A^{\circ} = \{ B = (b_{i,j}) \mid |b_{i,j}| = |a_{i,j}|, 1 \leq i, j \leq n \}.$$

This yields the main results of [5].

It is also possible to prove the analogue of Theorem 3, for Gerschgorin sets with partitionings [1], [2] using a similar argument. However, in this case, there is no analogue to the lemma characterizing $S(\Omega_A)$ and the extension of Theorem 4 is not generally true. The best results for this case have been given by Johnston [2].

Bibliography

- 1. D. Feingold and R. S. Varga, Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem, Pacific J. Math. 12 (1962), 1241-1250.
- 2. R. L. Johnston, Block generalizations of some Gerschgorin-type theorems, Ph.D. Thesis, Case Institute of Technology, Cleveland, Ohio, 1965.
- 3. V. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3 (1961), 272-275.
- 4. B. W. Levinger and R. S. Varga, Minimal Gerschgorin sets. II, Pacific J. Math. 17 (1966), 199-210.
 - 5. ——, On a problem of O. Taussky, Pacific J. Math 19 (1966), 473-487.
 - 6. R. S. Varga, Minimal Gerschgorin sets, Pacific J. Math. 15 (1965), 719-729.

CASE INSTITUTE OF TECHNOLOGY