ON A SEMIPRIMARY RING
KWANGIL KOH

Let R be a ring with 1 having radical (Jacobson) N. R is called
semiprimary [2, p. 56] if and only if R/N satisfies the minimum condi-
tion for right ideals. If M is a right R-module, a submodule 4 of M is
called small [5] if A+B=M for any submodule B of M implies
B= M. A submodule 4 of M is called large [3] if ANB=0 for any
submodule B of M implies B=0. A right ideal in R is called small or
large if I is small or large as a submodule of the right regular R-
module Rg. A projective cover [1] of M is an epimorphism of a projec-
tive module onto M such that its kernel is small. The main results
of this paper are the following theorems:

THEOREM 1. Every irreducible (right) R-module has a projective cover
if and only if R is semiprimary and for any nonzero idempotent x+N
in R/ N there is a nonzero idempotent ¢ in R such that ex—e&N.

Theorem 1 is related to Theorem 2.1 of [1].

THEOREM 2. If R is commutative then every irreducible R-module has
a projective cover if and only if R is semiprimary and for any nonzero
idempotent x+N in R/ N there is an idempotent eE R such that x—eEN.

LemMA 1. If I is a maximal right ideal of R then the right R-module
R/I has a projective cover if and only if there is a nonzero idempotent
eE R such that el is small.

ProOF. Let f be an epimorphism from a projective module P onto
R/I such that the kernel of f is small in P. Since R is projective (as
Rp), there is an R-homomorphism % from R into P making

R
/
/
h// Ly
//
P ~R/I -0

o

0

where 7 is the natural mapping, commutative. Since for any arbitrary
pEP, f(p)=n(x)=fh(x) for some xER, p—h(x)ESKer f. Hence
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P=Ker f+h(R). Since the Ker f is small, this implies that P =k(R).
Let po=#(1). Then P=p,R and R p,R—0, where tpo(x) =pox for
all xER, is direct since P is projective. Hence Ker ¢, = {rERl por = 0}
is a direct summand of R. Since po=*h(1), Ker h=Ker &, If k(1) =0,
then Ker ¢,,=1 and [ is a direct summand of R. Hence there is a mini-
mal right ideal J in R such that R=J@I. Thus, by [2, p. 50], there
is an idempotent e>0 in J such that e/ =0 is small. If £(I) 0 then
h(I) CKer f since fh(I)=w(I)=0. Thus k(I) is small. Since A(R) is
projective, there is an R-homomorphism ¢ from #(R) making

h(R)
/
4 i
r: h(R) 0
h

where ¢ is the identity map, commutative. Since A([) is small,
¢ (h(D)) is small in R by [4, p. 93]. Let ¢(po) =a ER. Then po = hd(po)
=h(a) =h(1)a=poa. Therefore,a =¢(po) = (poa) =a*and al =¢(h(I))
is small. Clearly a0 since k¢ (po) = po. Conversely, suppose there is a
nonzero idempotent e in R such that el is small. Since e/ CN by
[1, Lemma 2.4], the right ideal (I: ¢) = {rER|er&1I} is I. Define a
mapping g from eR onto R/I by g(er) =r-+1I for all er&eR. Since
ery=ers then r—r,&(I: e)=1, g is well defined and clearly g is an
R-homomorphism from e¢R onto R/I. Furthermore since eR is a direct
summand of R, eR is projective and since the kernel of g is e/, which is
small, g is a projective cover for R/I.

LemMma 2. Let I be a large maximal right ideal in R and let L
= {xER|xI=0}. Then L2=0.

ProoF. If x>0, y£0 are elements in L then I/MNyR#0 and x(yr) =0
for some r &R such that yr5£0 in I. If xy>0, then »& since the set
{rERI (xy)r=0} =I. This is impossible since y70 and y&L. Thus
L*=0.

ProoFr oF THEOREM 1. Suppose every irreducible R-module has a
projective cover. Let T be a maximal right ideal of R/N. Then there
is a maximal right ideal I in R such that 7=1/N. By Lemma 1, there
is a nonzero idempotent e in R such that el is small. By [1, Lemma
2.4], eICN. Since eEN, e+ N is a nonzero left annihilator of T.
Hence by Lemma 2, T cannot be large. Since T is a maximal right ideal
of R/N, T must be a direct summand of R/N if T is not large. Thus by
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[6, Lemma 3.1], R/N must be a semisimple ring with the minimum
condition for right ideals. Now let x€ER such that x*—x&N. If
x€& N, by Zorn’s Lemma, we can construct a right ideal J* in R with
the properties that NC J*, x& J* such that if K is a right ideal which
contains J* properly then x & K. Then the right R-module xR+ J*/J*
is irreducible and (J*: x) = {rER|xr&J*} is a maximal right ideal
of R. Hence there is an idempotent ¢>£0 in R such thate-(J*:x) CN.
Since x2—x=x(x—1)EN, (x—1)E(J*: x) and e(x—1) =ex—eE&N.
Conversely, suppose R is semiprimary and if x+ /N is a nonzero
idempotent in R/N then there is a nonzero idempotent ¢ in R such
that ex—e&N. If [ is a maximal right ideal of R, I/N is a maximal
right ideal of R/N, and since R is semiprimary, there is a minimal
right ideal K/N in R/N such that K/NNI/N=N and K/N®I/N
=R/N (see [4, p. 67]). Let £=x+N, for some xER, be a nonzero
idempotent in K/N such that - (I/N)=N. By hypothesis, there is a
nonzero idempotent e in R such that ex—e&N. Since xICN and
ex—e&EN, eI CN. Thus by Lemma 1, R/I has a projective cover.
The following corollary is related to Corollary 1 of [4, p. 76].

COROLLARY. 4 ring R is local (i.e. R/N is a division ring) if and
only if 1 is a primitive idempotent and every irreducible R-module has a
projective cover.

Proor. If R is a local ring then 1 and 0 are only idempotents in R,
and since N is the only maximal right (left) ideal in R, every irreduc-
ible R-module has a projective cover. Conversely, suppose every
irreducible R-module has a projective cover and 1 is a primitive
idempotent in R. By Theorem 1, R/N is a semisimple ring with the
minimum condition on right ideals and if x+ N is a nonzero idem-
potent in R/N there is a nonzero idempotent e in R such that ex
—e&N. Since 1 is a primitive idempotent in R, e=1. Hence only
idempotents in R/N are zero and 14 N. Since R/N is semisimple
with a minimal right ideal, this implies that R is a local ring.

Proor oF THEOREM 2. We only need to prove that if R is commuta-
tive such that every irreducible R-module has a projective cover then
idempotents modulo NV can be lifted. We first prove that if x+ N is an
idempotent such that (x+N)(R/N) is a minimal ideal in R/N then
x—e&EN for some idempotent e in R. Let J* be as in the proof of
Theorem 1. Since xR+NDJ* DN and xR+ N/N is a minimal ideal
of R/N, J*=N since J* is properly contained in xR+ N. As in the
case of the proof of Theorem 1, there is an idempotent e in R such that
e-(J*¥:x)=e-(N: x) CN. Now (N: ex)=(N:x)=(N:e) since (N: x)
is a maximal ideal and (N: ex)D(N: x) D(N: ) D(N: ex). Thus
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(1—e)&E(N:e)=(N:x) and x—xeE&N. Since ex —e &N, this implies
that x—eE&N. Now let g=g? in R such that xg& N. Since e—x&EN,
egEN. Let ¢ =¢—eg. Then g-¢’=0 and ¢’ ¢’ =(e—eg)(e—eg) =e—eg
—egteg=e'. ¢+ N=e+N=x+N. It is well known that if R/N is
a semisimple ring with the minimum condition then 14+N = (x;+N)
+(@+N)+ - - - +(x.,+N) for some positive integer n where
x;—xEN, i=1,2, -+, n, xx;EN if i>j and (V: x,), for each 1,
is a maximal right ideal (see [2, p. 46 and p. 50]). By the above argu-
ment, we can choose an orthogonal set of idempotents ey, ez, « - -, €,
in R such that x;—e;EN, 7=1, 2,---, n, and 1+N=(es+N)
+(es+N)+ - - - +(ea+N). Now let y+ N be an arbitrary nonzero
idempotent in R/N. Then y+N=(ery+N)+(ey+N)+ - - -
+(e,y+N) and e;y-e;yEN if 1#j and (IV: e;y) is a maximal ideal for
all ¢ such that e;y§N. There is an orthogonal set of idempotents
@i, Qs + -+, G, in R such that y—(ai+a:+ - - - +a,)?EN and
(@mr+as+ - - - +an)?=(@1+as+ - - - +as).
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