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A ring with unit element is said to be left self-infective if and only if

every (left) 2?-homomorphism of a left ideal of R into R can be given

by the right multiplication of an element of R. In [l], Ikeda-

Nakayama introduced the following conditions in a ring R with unit

element:

(A) Every (left) 2?-homomorphism of a principal left ideal of R

into R may be given by the right multiplication of an element of R.

(Ao) Every (left) 2?-homomorphism of a principal left ideal L of R

into a residue module R/L', of R modulo a left ideal L', maybe obtained

by the right multiplication of an element, say c, of R: x—>xc (mod L'),

ixEL).
(B) If I is a finitely generated right ideal in 2?, then the set of right

annihilators of the set of left annihilators of I is 2.

(B*) If 2 is a principal right ideal in R, then the set of right annihi-

lators of the set of left annihilators of 2 is I.

We introduce another condition:

(C) If F is a finitely generated left free 2?-module and M is a cyclic

submodule of F then any 2?-homomorphism of M into R can be ex-

tended to a 2?-homomorphism of F into R.

In this paper, we shall prove the following: In a ring with 1, (B)

holds if and only if (C) holds. If 2? is a ring with 1 such that every

principal left ideal is projective, then the three conditions (A), (A0)

and (B) are equivalent. If 2? is a ring with 1 such that the right singu-

lar ideal (refer to [4] for definition) is zero, then 2? is a semisimple ring

with minimum conditions on one-sided ideals if and only if R satisfies

the maximum condition for annihilator right ideals and the condition

(B). In particular, a regular ring R with 1 is a semisimple ring with

minimum conditions on one-sided ideals if and only if it satisfies the

maximum condition for annihilator right ideals. In a simple ring R

with 1, the condition (B*) and the existence of a maximal annihilator

left ideal in R are necessary and sufficient conditions for R to satisfy

minimum conditions on one-sided ideals. In a ring with 1, the condi-

tion (B*) implies that the left singular ideal of R is, indeed, the

Jacobson radical of R.

In the sequel, if A is a subset in R, we denote the set of left (right)
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annihilators of X in R by l(X)(y(X)). In case X= {a}, one element

set, then we let l(X)=l(a)(y(X) =y(a)).

Theorem 1. If R is a ring with 1, then the condition (B) holds in R if

and only if the condition (C) holds in R.

Proof. Assume (B). Let

F = R® R® ■ ■ ■ ® R    (w copies)

for some positive integer w and let M be a cyclic submodule of F.

Then M = Rm0 for some m0EF and ?Wo = ai+a2 + • • • +a„ for some

ai, Oi, • • • , a„ in A\ Let h be a i?-homomorphism of M into R.

Then h(m0)=b for some bER- Let L = ()?„! l(af). Then LQl(b).
Since L = l(Y,tiaiR), T,ti aiR = r(L)^r(1(b)) by (B). Hence
6 = aiSi+a2S2+ • • • +a„s„ for some Si, s2, ■ ■ ■ , sn in R. Define

h(ri+r2+ ■ ■ ■ +rn) = XX1 risi for any n, r2, ■ ■ ■ ,rn in A\ Then h is

an i?-homomorphism of Finto i? and h(m) =h(m) for all mEM.

Assume (C). Let 7 be a finitely generated right ideal of R, say

7= XXi xiR- Since IQy(l(I)) always, it suffices to proveY(/(7))C7.

For each xEy(l(I)), (fX-i l(xi))-x = 0. Define a (left) 7x!-homomor-

phism / from R into the free left i?-module

F=R®R®---®R    (ff copies)

by/(a) =axi+ax2+ • • • +ax„ for all aER. Let M=f(R). Define the
i?-homomorphism g from M into R by g(f(a)) =ax for all aER- We

need to show that g is indeed well defined. If /(a) =/(b), a, bER, then

a — bE^"=i l(xi) since

/(a) = axi + axi + • • • + axH = bxi + bx2 + ■ ■ ■ + bxH = /(b).

Hence a — bEl(x) and ax = bx. Since M is a cyclic submodule of F, by

(C) we may extend g to g which is an i?-homomorphism of F into R.

Now

x = |/(1) = g(xi + x2 + ■ ■ ■ + xn) = g(xi + 0 + 0 + • • • + 0)

+ 1(0 + x2 + 0 • • • + 0) + • • • + 1(0 + 0 + • • • + 0 + Xn)

= xig(l + 0 + 0+---+0)+ x2|(0 + 1 + 0---+())+•••

+ xng(0 + 0 + • ■ • + 0 + 1).

Thus xG7.

Theorem 2. 1/Ris a ring with 1 such that every principal left ideal is

projective then the three conditions (A), (Ao) awa" (B) are equivalent.
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Proof. Since (B) implies (A) always in any ring with 1 by [2, (i) of

Theorem l], we shall prove that (A)=>(A0)=>(B). Let a be a nonzero

element of R. Then Ra is projective. Hence the following diagram,

Ra
/

h/     i
/

R--Ra--0

where i is the identity mapping, 7r„(x) =xa for all xER and h is an

2?-homomorphism of Ra into R, is commutative. By (A), A(a) =ar0 for

some r0 in R. Now ar0a = A(a)a = 7r„A(a) =a. Thus R is a regular ring

and by [2, Theorem 3], (A)=>(A0). Since (A0) implies that R is a

regular ring by [2, Theorem 3], and any finitely generated right ideal

in a regular ring is a principal right ideal generated by an idempotent

element (see, for example, [6, Lemma 15, p. 710]), (A0) implies (B).

Lemma. 1 Let Rbea ring with unit element such that if I is a maximal

right ideal in R then there is a nonzero right ideal K in R such that

IDK= (0). Then R is a semisimple ring with minimum conditions on

one-sided ideals.

Proof. Let F be the right socle of R. If KjEF, then by Zorn's

Lemma there exists a maximal right ideal, say I of R such that I'D F.

Let K he a nonzero right ideal of R such that IDK=iO). Then K

must be a minimal right ideal of R since 2 is a maximal right ideal.

Hence K is a minimal right ideal which is not contained in F. This is

impossible. Thus l£Fand F=R. From [l, Theorem 11, p. 61], the

assertion follows.

We say a ring R satisfies the maximum condition for annihilator

right ideals if every nonvacuous collection of annihilator right ideals

of R contains a maximal element.

Theorem 3. Let R be a ring with unit element such that the right

singular ideal of R is zero. Then the following two statements are equiva-

lent:

(a) R is a semisimple ring with minimum conditions on one-sided

ideals.

(b) R satisfies the maximum condition for annihilator right ideals and

the condition (B).

Proof. Assume (a). Since any semisimple ring 2? with minimum

1 The author proposed this lemma as a problem in the Canad. Math. Bull. 8 (1965).
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condition on right ideals satisfies the maximum condition for right

ideals (see, for example, [3, p. 64]), R satisfies the maximum condi-

tion for annihilator right ideals. By [3, Structure Theorem (3), p. 12]

and [2, (iii) of Theorem l], R satisfies the condition (B). Conversely,

assume (b). Let 7 be a maximal right ideal of R. We shall prove that

1(1)^0. Let 5 be a family of annihilator left ideals in R such that

LES if and only if L= D"_, /(x.) for some finite number of x,- in 7.

Since the maximum condition on annihilator right ideals implies the

minimum condition on annihilator left ideals, we may choose a mini-

mal member, say L0ES. Let L0= n*=1 1(xj) for some xi, x2) • • • ,

XjEI- Since DJ_i l(x,) =l(xiR+x2R+ • • • +XjR), by (B) y(L0)
= y(l(xiR+x2R+ ■ ■ ■ +XjR))=xiR+x2R+ ■ ■ ■ +XjRQI. Hence

Ao^O. If xE7 then l(x) f~\L0QL0. Hence l(x) f\L0 = 7o since L0 is a

minimal member of S and l(x) r\L0ES. Thus 0f^70c;(x) and

O^LoQ nze/ l(x) =1(1). Since the right singular ideal of R is zero and

1(1)^0, there must exist a nonzero right ideal K in R such that

IC\K = Q. Thus, by the Lemma, (a) is true.

Corollary. 7/ R is a regular ring with 1 such that it satisfies the

maximum condition for annihilator right ideals, then R is a semisimple

ring with minimum conditions on one-sided ideals.

Proof. As noted before, any finitely generated right ideal in a

regular ring is a principal right ideal generated by an idempotent

element. Hence the condition (B) is satisfied. By [5, p. 1386] a regular

ring has zero right singular ideal. Thus by Theorem 3, the assertion

is true.

Theorem 4. Let R be a simple ring with unit element. Then the fol-

lowing two statements are equivalent:

(a) There exists a maximal annihilator left ideal in R and (B*) holds

in R.
(b) R satisfies the minimum condition on one-sided ideals.

Proof. Clearly (b) implies (a). Assume (a). It is well known that a

simple ring with a minimal one-sided ideal is isomorphic to a dense

ring of linear transformations of finite rank of a vector space over a

division ring. Hence it suffices to prove an existence of a minimal

one-sided ideal in R in our case since 1ER- We shall show that there

is a maximal right ideal 7 in R which has zero intersection with some

nonzero right ideal K in R. Suppose that if 7 is a maximal right ideal

in R then ir\K?±0 for any nonzero right ideal K in R. Let aER,

a5^0, such that 1(a) is a maximal annihilator left ideal. Then a -7^0

since a simple ring with 1   has zero  (right)  singular ideal.  Hence
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alDI^O. Let xEalDI such that x 5^0. Then x = ai for some iEI and

lix)=liai) =/(a) since /(a)C/(x) and 1(a) is a maximal annihilator left

ideal. Now /(a)=/(x) =lixR). Hence aEjiKa)) =y(Z(x2?)) =xRCZI.

Thus a is contained in the intersection of all maximal right ideals /

in R. That is, the Jacobson radical of R is not zero. This is impossible.

Theorem 5. If R is a ring with 1 such that (B*) holds in R then the

left singular ideal of R is, indeed, the Jacobson radical of R.

Proof. Let x be a nonzero element in the left singular ideal of R.

Then 0 = /(l -x). Otherwise, Z(x)rV(l -x) ^0 and if yElix)Dlil -x),

y?^0, then y = yx = 0. Hence 2?=y(/(l -x)) =y(/((l -x)R)) = (1 -x)R

by (B*). Thus every element of the left singular ideal of R is quasi-

regular. Suppose there is an element a in the Jacobson radical of R

which is not contained in the left singular ideal of R. Then there is a

nonzero left ideal K in R such that KDlia) =0. Let kEK and k^O.

Then l(k) = lika) since xka = 0 if and only if xk = 0 for any x£2?. Since

likR)=lik)=lika)=likaR), by (B*) kR = rilik))=rilika)) = kaR.
Hence k = kar for some rER and kil —ar) =0. However, ar is in the

Jacobson radical of R. Hence (1 —ar)x = 1 for some x£2?. This implies

that kil— ar)x = k = 0. This is absurd. Thus the left singular ideal of

R must be the Jacobson radical of R.

Corollary. If R is a ring with 1 such that (A) holds in R, then the

left singular ideal of R is the Jacobson radical of R.

Proof. By [2, (i) of Theorem l], (A) is equivalent to (B*). Hence

from Theorem 5, the assertion follows.
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