## ON SOME CHARACTERISTIC PROPERTIES OF SELF-INJECTIVE RINGS

## KWANGIL KOH

A ring with unit element is said to be *left self-injective* if and only if every (left) R-homomorphism of a left ideal of R into R can be given by the right multiplication of an element of R. In [2], Ikeda-Nakayama introduced the following conditions in a ring R with unit element:

- (A) Every (left) R-homomorphism of a principal left ideal of R into R may be given by the right multiplication of an element of R.
- $(A_0)$  Every (left) R-homomorphism of a principal left ideal L of R into a residue module R/L', of R modulo a left ideal L', may be obtained by the right multiplication of an element, say c, of  $R: x \rightarrow xc \pmod{L'}$ ,  $(x \in L)$ .
- (B) If I is a finitely generated right ideal in R, then the set of right annihilators of the set of left annihilators of I is I.
- $(B^*)$  If I is a principal right ideal in R, then the set of right annihilators of the set of left annihilators of I is I.

We introduce another condition:

(C) If F is a finitely generated left free R-module and M is a cyclic submodule of F then any R-homomorphism of M into R can be extended to a R-homomorphism of F into R.

In this paper, we shall prove the following: In a ring with 1, (B) holds if and only if (C) holds. If R is a ring with 1 such that every principal left ideal is projective, then the three conditions (A), (A<sub>0</sub>) and (B) are equivalent. If R is a ring with 1 such that the right singular ideal (refer to [4] for definition) is zero, then R is a semisimple ring with minimum conditions on one-sided ideals if and only if R satisfies the maximum condition for annihilator right ideals and the condition (B). In particular, a regular ring R with 1 is a semisimple ring with minimum conditions on one-sided ideals if and only if it satisfies the maximum condition for annihilator right ideals. In a simple ring R with 1, the condition (B\*) and the existence of a maximal annihilator left ideal in R are necessary and sufficient conditions for R to satisfy minimum conditions on one-sided ideals. In a ring with 1, the condition (B\*) implies that the left singular ideal of R is, indeed, the Jacobson radical of R.

In the sequel, if X is a subset in R, we denote the set of left (right)

Received by the editors June 30, 1966 and, in revised form, October 25, 1966.

annihilators of X in R by  $l(X)(\gamma(X))$ . In case  $X = \{a\}$ , one element set, then we let  $l(X) = l(a)(\gamma(X) = \gamma(a))$ .

THEOREM 1. If R is a ring with 1, then the condition (B) holds in R if and only if the condition (C) holds in R.

PROOF. Assume (B). Let

$$F = R \oplus R \oplus \cdots \oplus R$$
 (n copies)

for some positive integer n and let M be a cyclic submodule of F. Then  $M = Rm_0$  for some  $m_0 \in F$  and  $m_0 = a_1 \dotplus a_2 \dotplus \cdots \dotplus a_n$  for some  $a_1, a_2, \cdots, a_n$  in R. Let h be a R-homomorphism of M into R. Then  $h(m_0) = b$  for some  $b \in R$ . Let  $L = \bigcap_{i=1}^n l(a_i)$ . Then  $L \subseteq l(b)$ . Since  $L = l(\sum_{i=1}^n a_i R)$ ,  $\sum_{i=1}^n a_i R = r(L) \supseteq r(l(b))$  by (B). Hence  $b = a_1 s_1 + a_2 s_2 + \cdots + a_n s_n$  for some  $s_1, s_2, \cdots, s_n$  in R. Define  $\bar{h}(r_1 \dotplus r_2 \dotplus \cdots \dotplus r_n) = \sum_{i=1}^n r_i s_i$  for any  $r_1, r_2, \cdots, r_n$  in R. Then  $\bar{h}$  is an R-homomorphism of F into R and  $\bar{h}(m) = h(m)$  for all  $m \in M$ .

Assume (C). Let I be a finitely generated right ideal of R, say  $I = \sum_{i=1}^{n} x_i R$ . Since  $I \subseteq \gamma(l(I))$  always, it suffices to prove  $\gamma(l(I)) \subseteq I$ . For each  $x \in \gamma(l(I))$ ,  $(\bigcap_{i=1}^{n} l(x_i)) \cdot x = 0$ . Define a (left) R-homomorphism f from R into the free left R-module

$$F = R \oplus R \oplus \cdots \oplus R$$
 (n copies)

by  $f(a) = ax_1 \dotplus ax_2 \dotplus \cdots \dotplus ax_n$  for all  $a \in R$ . Let M = f(R). Define the R-homomorphism g from M into R by g(f(a)) = ax for all  $a \in R$ . We need to show that g is indeed well defined. If f(a) = f(b), a,  $b \in R$ , then  $a - b \in \bigcap_{i=1}^n l(x_i)$  since

$$f(a) = ax_1 \dotplus ax_2 \dotplus \cdots \dotplus ax_n = bx_1 \dotplus bx_2 \dotplus \cdots \dotplus bx_n = f(b).$$

Hence  $a-b \in l(x)$  and ax = bx. Since M is a cyclic submodule of F, by (C) we may extend g to  $\bar{g}$  which is an R-homomorphism of F into R. Now

$$x = \bar{g}f(1) = \bar{g}(x_1 + x_2 + \cdots + x_n) = \bar{g}(x_1 + 0 + 0 + \cdots + 0) + \bar{g}(0 + x_2 + 0 + \cdots + 0) + \cdots + \bar{g}(0 + 0 + \cdots + 0 + x_n) = x_1\bar{g}(1 + 0 + 0 + \cdots + 0) + x_2\bar{g}(0 + 1 + 0 + \cdots + 0) + \cdots + x_n\bar{g}(0 + 0 + \cdots + 0 + 1).$$

Thus  $x \in I$ .

THEOREM 2. If R is a ring with 1 such that every principal left ideal is projective then the three conditions (A),  $(A_0)$  and (B) are equivalent.

PROOF. Since (B) implies (A) always in any ring with 1 by [2, (i) of Theorem 1], we shall prove that  $(A) \Rightarrow (A_0) \Rightarrow (B)$ . Let a be a nonzero element of R. Then Ra is projective. Hence the following diagram,



where *i* is the identity mapping,  $\pi_a(x) = xa$  for all  $x \in R$  and *h* is an *R*-homomorphism of Ra into *R*, is commutative. By (A),  $h(a) = ar_0$  for some  $r_0$  in *R*. Now  $ar_0a = h(a)a = \pi_ah(a) = a$ . Thus *R* is a regular ring and by [2, Theorem 3],  $(A) \Rightarrow (A_0)$ . Since  $(A_0)$  implies that *R* is a regular ring by [2, Theorem 3], and any finitely generated right ideal in a regular ring is a principal right ideal generated by an idempotent element (see, for example, [6, Lemma 15, p. 710]),  $(A_0)$  implies (B).

LEMMA. Let R be a ring with unit element such that if I is a maximal right ideal in R then there is a nonzero right ideal K in R such that  $I \cap K = (0)$ . Then R is a semisimple ring with minimum conditions on one-sided ideals.

PROOF. Let F be the right socle of R. If  $1 \notin F$ , then by Zorn's Lemma there exists a maximal right ideal, say I of R such that  $I \supseteq F$ . Let K be a nonzero right ideal of R such that  $I \cap K = (0)$ . Then K must be a minimal right ideal of R since I is a maximal right ideal. Hence K is a minimal right ideal which is not contained in F. This is impossible. Thus  $1 \in F$  and F = R. From [1, Theorem 11, p. 61], the assertion follows.

We say a ring R satisfies the maximum condition for annihilator right ideals if every nonvacuous collection of annihilator right ideals of R contains a maximal element.

THEOREM 3. Let R be a ring with unit element such that the right singular ideal of R is zero. Then the following two statements are equivalent:

- (a) R is a semisimple ring with minimum conditions on one-sided ideals.
- (b) R satisfies the maximum condition for annihilator right ideals and the condition (B).

PROOF. Assume (a). Since any semisimple ring R with minimum

<sup>&</sup>lt;sup>1</sup> The author proposed this lemma as a problem in the Canad. Math. Bull. 8 (1965).

condition on right ideals satisfies the maximum condition for right ideals (see, for example, [3, p. 64]), R satisfies the maximum condition for annihilator right ideals. By [3, Structure Theorem (3), p. 12] and [2, (iii) of Theorem 1], R satisfies the condition (B). Conversely, assume (b). Let I be a maximal right ideal of R. We shall prove that  $l(I) \neq 0$ . Let S be a family of annihilator left ideals in R such that  $L \subseteq S$  if and only if  $L = \bigcap_{i=1}^{n} l(x_i)$  for some finite number of  $x_i$  in I. Since the maximum condition on annihilator right ideals implies the minimum condition on annihilator left ideals, we may choose a minimal member, say  $L_0 \in S$ . Let  $L_0 = \bigcap_{j=1}^k l(x_j)$  for some  $x_1, x_2, \cdots$ ,  $x_j \in I$ . Since  $\bigcap_{j=1}^k l(x_j) = l(x_1R + x_2R + \cdots + x_jR)$ , by (B)  $\gamma(L_0)$  $= \gamma(l(x_1R + x_2R + \cdots + x_jR)) = x_1R + x_2R + \cdots + x_jR \subseteq I.$  $L_0 \neq 0$ . If  $x \in I$  then  $l(x) \cap L_0 \subseteq L_0$ . Hence  $l(x) \cap L_0 = L_0$  since  $L_0$  is a minimal member of S and  $l(x) \cap L_0 \subseteq S$ . Thus  $0 \neq L_0 \subseteq l(x)$  and  $0 \neq L_0 \subseteq \bigcap_{x \in I} l(x) = l(I)$ . Since the right singular ideal of R is zero and  $l(I) \neq 0$ , there must exist a nonzero right ideal K in R such that  $I \cap K = 0$ . Thus, by the Lemma, (a) is true.

COROLLARY. If R is a regular ring with 1 such that it satisfies the maximum condition for annihilator right ideals, then R is a semisimple ring with minimum conditions on one-sided ideals.

PROOF. As noted before, any finitely generated right ideal in a regular ring is a principal right ideal generated by an idempotent element. Hence the condition (B) is satisfied. By [5, p. 1386] a regular ring has zero right singular ideal. Thus by Theorem 3, the assertion is true.

THEOREM 4. Let R be a simple ring with unit element. Then the following two statements are equivalent:

- (a) There exists a maximal annihilator left ideal in R and  $(B^*)$  holds in R.
  - (b) R satisfies the minimum condition on one-sided ideals.

PROOF. Clearly (b) implies (a). Assume (a). It is well known that a simple ring with a minimal one-sided ideal is isomorphic to a dense ring of linear transformations of finite rank of a vector space over a division ring. Hence it suffices to prove an existence of a minimal one-sided ideal in R in our case since  $1 \in R$ . We shall show that there is a maximal right ideal I in R which has zero intersection with some nonzero right ideal K in R. Suppose that if I is a maximal right ideal in R then  $I \cap K \neq 0$  for any nonzero right ideal K in K. Let  $K \in R$ ,  $K \neq 0$ , such that  $K \in R$  is a maximal annihilator left ideal. Then  $K \in R$  since a simple ring with 1 has zero (right) singular ideal. Hence

 $aI \cap I \neq 0$ . Let  $x \in aI \cap I$  such that  $x \neq 0$ . Then x = ai for some  $i \in I$  and l(x) = l(ai) = l(a) since  $l(a) \subseteq l(x)$  and l(a) is a maximal annihilator left ideal. Now l(a) = l(x) = l(xR). Hence  $a \in \gamma(l(a)) = \gamma(l(xR)) = xR \subseteq I$ . Thus a is contained in the intersection of all maximal right ideals I in R. That is, the Jacobson radical of R is not zero. This is impossible.

THEOREM 5. If R is a ring with 1 such that  $(B^*)$  holds in R then the left singular ideal of R is, indeed, the Jacobson radical of R.

PROOF. Let x be a nonzero element in the left singular ideal of R. Then 0=l(1-x). Otherwise,  $l(x)\cap l(1-x)\neq 0$  and if  $y\in l(x)\cap l(1-x)$ ,  $y\neq 0$ , then y=yx=0. Hence  $R=\gamma(l(1-x))=\gamma(l((1-x)R))=(1-x)R$  by  $(B^*)$ . Thus every element of the left singular ideal of R is quasiregular. Suppose there is an element a in the Jacobson radical of R which is not contained in the left singular ideal of R. Then there is a nonzero left ideal K in R such that  $K\cap l(a)=0$ . Let  $k\in K$  and  $k\neq 0$ . Then l(k)=l(ka) since xka=0 if and only if xk=0 for any  $x\in R$ . Since l(kR)=l(k)=l(ka)=l(kaR), by  $(B^*)$  kR=r(l(k))=r(l(ka))=kaR. Hence k=kar for some  $r\in R$  and k(1-ar)=0. However, ar is in the Jacobson radical of R. Hence (1-ar)x=1 for some  $x\in R$ . This implies that k(1-ar)x=k=0. This is absurd. Thus the left singular ideal of R must be the Jacobson radical of R.

COROLLARY. If R is a ring with 1 such that (A) holds in R, then the left singular ideal of R is the Jacobson radical of R.

PROOF. By [2, (i) of Theorem 1], (A) is equivalent to (B\*). Hence from Theorem 5, the assertion follows.

ACKNOWLEDGMENT. The author is indebted to the referee for many helpful comments.

## REFERENCES

- 1. Claude Chevalley, Fundamental concepts of algebra, Academic Press, New York, 1956.
- 2. M. Ikeda and T. Nakayama, On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15-19.
  - 3. J. P. Jans, Rings and homology, Holt, Rinehart and Winston, New York, 1964.
- 4. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
- 5. ——, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.
- 6. J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707-713.

NORTH CAROLINA STATE UNIVERSITY