2.     - Corrections to "Codimension and multiplicity," Ann. of Math. (2) 70 (1959), 395-397.
3. J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204.
4. M. M. Fraser, Multiplicities and Grothendieck groups, Trans. Amer. Math. Soc. (to appear).
5. J.-P. Serre, Algèbre locale: Multiplicities, Lecture Notes in Mathematics No. II, Springer, Berlin, 1965.

University of Illinois

## THE DISTANCE FROM $U(z) \cdot H^{p}$ TO 1

D. J. NEWMAN

If $U(z)$ is an inner function, then the set $U(z) \cdot H^{p}$ of all $H^{p}$ multiples of $U(z)$ forms a closed subspace of $H^{p}$. In this note we compute the $H^{p}$ distance between the constant function 1 and this closed subspace. It is of course well known that this distance is 0 if and only if $U(z)$ is a constant, i.e. if and only if $|U(0)|=1$. We will prove

Theorem. dist $\left(1, U(z) \cdot H^{p}\right)=\left(1-|U(0)|^{2}\right)^{1 / p}, \quad p \geqq 1$.
Proof. With

$$
f_{p}(z)=\frac{1-(1-U(z) \bar{U}(0))^{2 / p}}{U(z)}
$$

we have

$$
\begin{aligned}
& \left\|1-U(z) f_{p}(z)\right\|=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|1-U(z) \bar{U}(0)|^{2} d \theta\right)^{1 / p} \\
& \quad=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|U(z)-U(0)|^{2} d \theta\right)^{1 / p}=\left(1-|U(0)|^{2}\right)^{1 / p}
\end{aligned}
$$

so that this distance is surely $\leqq\left(1-|U(0)|^{2}\right)^{1 / p}$ and we need only show that $f_{p}(z)$ is the closest function to 1 , i.e. that, for all $f(z) \in H^{p}$,

$$
\begin{equation*}
\|1-U(z) f(z)\|_{p} \geqq\left(1-|U(0)|^{2}\right)^{1 / p} \tag{1}
\end{equation*}
$$

Consider

$$
\begin{aligned}
I & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{1}{U(z)}-f(z)\right)(U(z)-U(0))(1-U(z) \bar{U}(0))^{1-2 / p} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{1}{U(z)}-f_{p}(z)\right)(U(z)-U(0))(1-U(z) \bar{U}(0))^{1-2 / p} d \theta
\end{aligned}
$$

(since $f(z)-f_{p}(z)$ is analytic).
Thus,

$$
\begin{aligned}
I & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{(U(z)-U(0))}{U(z)}(1-U(z) \bar{U}(0)) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}|U(z)-U(0)|^{2} d \theta
\end{aligned}
$$

or

$$
\begin{equation*}
I=1-|U(0)|^{2} \tag{2}
\end{equation*}
$$

On the other hand, by Hölder's inequality, for $p>1$,

$$
I \leqq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|1-U(z) f(z)|^{p} d \theta\right)^{1 / p}
$$

$$
\left(\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \left(|U(z)-U(0)|^{\left.2-2 / p)^{p /(p-1)} d \theta\right)^{(p-1) / p}}\right.\right.
$$

$$
=\|1-U(z) f(z)\|_{p} \cdot\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|U(z)-U(0)|^{2} d \theta\right)^{1-1 / p}
$$

The same clearly holds for $p=1$.
Hence

$$
\begin{equation*}
I \leqq\|1-U(z) f(z)\|_{p} \cdot\left(1-|U(0)|^{2}\right)^{1-1 / p} \tag{3}
\end{equation*}
$$

Comparing (2) and (3) yields (1) immediately.
In the simple case of $H^{2}$ and a finite Blaschke product we obtain the
Corollary. Let $\left|z_{i}\right|<1, i=1,2, \cdots, N$. The minimum value of $\sum\left|C_{n}\right|^{2}$ subject to $\sum_{n=0}^{\infty} C_{n} z_{i}^{n}=1, i=1,2, \cdots, N$, is $1-\left|z_{1} z_{2} \cdots z_{N}\right|^{2}$.

