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1. Introduction. Let iH, p,„) be a regular Hausdorff method of

summability, and let

(1) tn=zZ()(^"Hn+l)Sk,
k=n \n/

(2) bn = JZ( )(**-*.)at,
i_n \n/

where 5i = oo+oi+ • ■ • +ak. We shall call A the summability method

given by the sequence-to-sequence transformation (1), and B the

summability method given by the series-to-series transformation (2).

It is proved in [2] and [3] that summabilities A and B are regular.

We shall say that the transformations (1) and (2) are equivalent if

the convergence of (1) for all n implies the convergence of (2)

for all m, and conversely, and in either case, the sums are related by

the equation

(3) t„ = bo + h + ■ ■ ■ + bn.

(1) may be written as

/  =   H*iun+l)S,

where s, t denote the sequences isk), (4), and 22*(p.B+i) the matrix

ioin.k), where

«»,* = (   JiAk-nun+i)        ik = n),

= 0        ik< n).

We shall prove the following two theorems.

Theorem 1. If U = bo, and

(4) /2*0un+i) {H*in + l)s} = H*in + 1) {H*inn+i)s},

then the transformations (1) and (2) are equivalent.

Theorem 2. If, for all (fixed) n,
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(5) ( W-'W^^O

as &—><», then the transformations (1) and (2) are equivalent.

2. Proof of Theorem 1. Let a and b denote the sequences

{(w + l)an+ij and {(n + l)(t„+i—t„)}. Then 3= — H*(n + \)s, and,

by (4),

b = - H*(n + l)f = - 77*(m + l){H*dxn+i)s}

(6) = -H*(nn+i){H*(n+l)s}

= H*(jin+i)a.

Hence

(7) (m + l)(/n+1 - tn) = Z ( ) (A"-^n+i)(k + l)ak+i
k=n \n/

for w^O. Noting that (k-r-l/n + l)Ckin = Ck+i,n+i and replacing k-\-l

by k and w + 1 by «, we have

tn   -   tn-l   =    Xi        ) (AK~nIJln)ak  =  bn
k=n \n/

for n^ 1, and i0 — &o by hypothesis. Thus (3) is satisfied, and the trans-

formations (1) and (2) are equivalent.

3. Proof of Theorem 3. Write

bn,K= Z(    ) (A*->n)at,

£,//&\
in,K   =   Z (       ) (A*   nHn+l)Sk

k=n \n/

(both of these may be taken as 0 for n>K). If (5) holds, then, for

any fixed n, we have, as K—->°o

bn,K = Z (    ) (A*->„)(-5* - ft-i)
, „ k=n\n/

(8)

=   E **a|Q(A*-m,)| +o(l),

where the A outside the curly bracket is taken as operating on the

variable k, and the curly bracket is taken as 0 when k = n — l. Now

using
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A*-"m„ = A*+1">„ + Al-"txn+i

we have

A | (j (A*">B)}   = M [A*+1-»m„ + A*-"Mn+1] - ( J A**1-/*,

(9)

= - ( ) A*~<«-»»„ + (   ) A*-"Un+l,
\n — 1/ \n/

where we take the second term on the right of (9) as meaning 0 in the

case k = n— 1, and the first as meaning 0 when m = 0.

We deduce at once from (8) and (9) that, for fixed n,

tn.K   =   bo.K  + bl.K +   •   '   •   +  b„,K  +  o(l)

as K—r oo , and this proves the theorem.

4. Examples. Now let us apply these ideas to some examples. We

shall use the following lemma which is a paraphrase of Theorem 26

in [1].

Lemma. If, for any sequence ipk) which is monotonic decreasing for

large enough k, ^2t=n akpk exists, then

k

lim pkzZai = 0-
*-»» l=n

(i) If m„=X" (0<X<1), then (1) becomes

(10) t, = A"+1Z( Vl -\)k-"sk.
k=n \n/

This is the circle method of summation introduced by Hardy and

Littlewood. (2) becomes

(11) bn = \»zZ(   )(l-A)*-»a*,
k=n \n/

and (5) becomes

(12) Qd-^v^o,

The convergence of (10) for a given n implies (12) for that n. Also,

by the lemma quoted above with pk = Ck,nil — X)*~", the convergence

of (11) for a given n implies (12).
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Since summability A asserts more than the convergence of (10)

for all w, and summability B asserts more than the convergence of

(11) for each n, we see at once that, in this case, summabilities A

and B are equivalent.

(ii) H
(n + A-1

M" = U ) '

then (1) becomes

-     *(* - l)(k - 2) • • • (k - n + 1)
L = r(n + 1) y, -sk

tn (k + r+l)(k + r) ■■ -(k + r-n)
(13)

» + 1 sn
=-A"r -   .

r + 1 fn + r + 1\

This is the quasi-Cesaro transformation (C*, r) introduced by

Kuttner [4]. (2) becomes

- k(k- 1) ■ ■ ■ (k-n+1)
bn = r y, -ak

tn (k + r)(k + r-l) ■ ■ -(k + r-n)
(14) ,

an

" Tcf)f
For any given w, the assertion that the series defining tn converges

is easily seen to be equivalent to

A   Sk

(15) Z -
t-i   k2

converges, while the assertion that the series defining bn converges is

equivalent to

(16) Z ~
*=i   «

converges. Condition (5) is easily seen to reduce, in the special case

considered, to

(17) sk = o(k).

By the lemma quoted above with pk = l/k, (16) implies (17). Hence,

whatever r, B=$A. On the other hand, it is clearly false that (15)
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implies (17). But summability A asserts more than the convergence

of (15), since (15) merely gives the existence of t„. Thus this does not

exclude the possibility that summability A might imply (17).

What we do, in fact, have is that A=>B is true when, rSl, but not

when r > 1. For recall that A is (C*, r). It follows from the results of a

paper by Kuttner [4] that (C*, r)=>iC, 1) when r^l; and it is well

known that (C, 1) implies (17). On the other hand, if r>l, let

1^/3<a<r, and sk= (— 1)*(& + 1)0. Then isk) is summable (C, a), and

hence summable (C*, r) [4]. But (17) is false. Indeed, (16) does not

converge, so that bn is not defined.
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