THE RELATION BETWEEN THE SEQUENCE-TO-SEQUENCE AND THE SERIES-TO-SERIES VERSIONS OF QUASI-HAUSDORFF SUMMABILITY METHODS

B. KWEE

1. Introduction. Let (H, μ_n) be a regular Hausdorff method of summability, and let

(1)
$$t_n = \sum_{k=n}^{\infty} {k \choose n} (\Delta^{k-n} \mu_{n+1}) s_k,$$

(2)
$$b_n = \sum_{k=n}^{\infty} {k \choose n} (\Delta^{k-n} \mu_n) a_k,$$

where $s_k = a_0 + a_1 + \cdots + a_k$. We shall call A the summability method given by the sequence-to-sequence transformation (1), and B the summability method given by the series-to-series transformation (2). It is proved in [2] and [3] that summabilities A and B are regular.

We shall say that the transformations (1) and (2) are equivalent if the convergence of (1) for all n implies the convergence of (2) for all n, and conversely, and in either case, the sums are related by the equation

$$(3) t_n = b_0 + b_1 + \cdots + b_n.$$

(1) may be written as

$$t = H^*(\mu_{n+1})s,$$

where s, t denote the sequences (s_k) , (t_k) , and $H^*(\mu_{n+1})$ the matrix $(\alpha_{n,k})$, where

$$\alpha_{n,k} = \binom{k}{n} (\Delta^{k-n} \mu_{n+1}) \qquad (k \ge n),$$

$$= 0 \qquad (k < n).$$

We shall prove the following two theorems.

THEOREM 1. If $t_0 = b_0$, and

(4)
$$H^*(\mu_{n+1})\{H^*(n+1)s\} = H^*(n+1)\{H^*(\mu_{n+1})s\},$$

then the transformations (1) and (2) are equivalent.

Theorem 2. If, for all (fixed) n,

Received by the editors May 18, 1964 and, in revised form, November 21, 1966.

(5)
$$\binom{k}{n} (\Delta^{k-n} \mu_n) s_{k-1} \to 0$$

as $k \to \infty$, then the transformations (1) and (2) are equivalent.

2. **Proof of Theorem 1.** Let \bar{a} and \bar{b} denote the sequences $\{(n+1)a_{n+1}\}$ and $\{(n+1)(t_{n+1}-t_n)\}$. Then $\bar{a}=-H^*(n+1)s$, and, by (4),

(6)
$$\bar{b} = -H^*(n+1)t = -H^*(n+1)\{H^*(\mu_{n+1})s\}$$
$$= -H^*(\mu_{n+1})\{H^*(n+1)s\}$$
$$= H^*(\mu_{n+1})\bar{a}.$$

Hence

(7)
$$(n+1)(t_{n+1}-t_n) = \sum_{k=n}^{\infty} {k \choose n} (\Delta^{k-n}\mu_{n+1})(k+1)a_{k+1}$$

for $n \ge 0$. Noting that $(k+1/n+1)C_{k,n} = C_{k+1,n+1}$ and replacing k+1 by k and n+1 by n, we have

$$t_n - t_{n-1} = \sum_{k=n}^{\infty} {k \choose n} (\Delta^{k-n} \mu_n) a_k = b_n$$

for $n \ge 1$, and $t_0 = b_0$ by hypothesis. Thus (3) is satisfied, and the transformations (1) and (2) are equivalent.

3. Proof of Theorem 3. Write

$$b_{n,K} = \sum_{k=n}^{K} {k \choose n} (\Delta^{k-n} \mu_n) a_k,$$

$$t_{n,K} = \sum_{k=n}^{K} {k \choose n} (\Delta^{k-n} \mu_{n+1}) s_k$$

(both of these may be taken as 0 for n > K). If (5) holds, then, for any fixed n, we have, as $K \rightarrow \infty$

(8)
$$b_{n,K} = \sum_{k=n}^{K} {k \choose n} (\Delta^{k-n} \mu_n) (s_k - s_{k-1}) \\ = \sum_{k=n-1}^{K} s_k \Delta \left\{ {k \choose n} (\Delta^{k-n} \mu_n) \right\} + o(1),$$

where the Δ outside the curly bracket is taken as operating on the variable k, and the curly bracket is taken as 0 when k=n-1. Now using

$$\Delta^{k-n}\mu_n = \Delta^{k+1-n}\mu_n + \Delta^{k-n}\mu_{n+1}$$

we have

$$\Delta \left\{ \binom{k}{n} (\Delta^{k-n} \mu_n) \right\} = \binom{k}{n} \left[\Delta^{k+1-n} \mu_n + \Delta^{k-n} \mu_{n+1} \right] - \binom{k+1}{n} \Delta^{k+1-n} \mu_n$$

$$= - \binom{k}{n-1} \Delta^{k-(n-1)} \mu_n + \binom{k}{n} \Delta^{k-n} \mu_{n+1},$$

where we take the second term on the right of (9) as meaning 0 in the case k=n-1, and the first as meaning 0 when n=0.

We deduce at once from (8) and (9) that, for fixed n,

$$t_{n,K} = b_{0,K} + b_{1,K} + \cdots + b_{n,K} + o(1)$$

as $K \rightarrow \infty$, and this proves the theorem.

4. **Examples.** Now let us apply these ideas to some examples. We shall use the following lemma which is a paraphrase of Theorem 26 in [1].

LEMMA. If, for any sequence (p_k) which is monotonic decreasing for large enough k, $\sum_{k=n}^{\infty} a_k p_k$ exists, then

$$\lim_{k\to\infty} p_k \sum_{l=n}^k a_l = 0.$$

(i) If $\mu_n = \lambda^n$ (0 < λ < 1), then (1) becomes

(10)
$$t_n = \lambda^{n+1} \sum_{k=n}^{\infty} {k \choose n} (1-\lambda)^{k-n} s_k.$$

This is the circle method of summation introduced by Hardy and Littlewood. (2) becomes

$$(11) b_n = \lambda^n \sum_{k=n}^{\infty} {k \choose n} (1-\lambda)^{k-n} a_k,$$

and (5) becomes

(12)
$$\binom{k}{n} (1-\lambda)^{k-n} s_{k-1} \to 0.$$

The convergence of (10) for a given n implies (12) for that n. Also, by the lemma quoted above with $p_k = C_{k,n}(1-\lambda)^{k-n}$, the convergence of (11) for a given n implies (12).

Since summability A asserts more than the convergence of (10) for all n, and summability B asserts more than the convergence of (11) for each n, we see at once that, in this case, summabilities A and B are equivalent.

(ii) If

$$\mu_n = \binom{n+r}{r}^{-1},$$

then (1) becomes

(13)
$$t_{n} = r(n+1) \sum_{k=n}^{\infty} \frac{k(k-1)(k-2) \cdot \cdot \cdot (k-n+1)}{(k+r+1)(k+r) \cdot \cdot \cdot (k+r-n)} s_{k}$$

$$= \frac{n+1}{r+1} \Delta^{-r} \left[\frac{s_{n}}{\binom{n+r+1}{n}} \right].$$

This is the quasi-Cesáro transformation (C^*, r) introduced by Kuttner [4]. (2) becomes

(14)
$$b_n = r \sum_{k=n}^{\infty} \frac{k(k-1) \cdot \cdot \cdot (k-n+1)}{(k+r)(k+r-1) \cdot \cdot \cdot (k+r-n)} a_k$$
$$= \Delta^{-r} \left\{ \frac{a_n}{\binom{n+r}{n}} \right\}.$$

For any given n, the assertion that the series defining t_n converges is easily seen to be equivalent to

$$(15) \qquad \sum_{k=1}^{\infty} \frac{s_k}{k^2}$$

converges, while the assertion that the series defining b_n converges is equivalent to

$$(16) \sum_{k=1}^{\infty} \frac{a_k}{k}$$

converges. Condition (5) is easily seen to reduce, in the special case considered, to

$$(17) s_k = o(k).$$

By the lemma quoted above with $p_k = 1/k$, (16) implies (17). Hence, whatever r, $B \Rightarrow A$. On the other hand, it is clearly false that (15)

implies (17). But summability A asserts more than the convergence of (15), since (15) merely gives the existence of t_n . Thus this does not exclude the possibility that summability A might imply (17).

What we do, in fact, have is that $A \Rightarrow B$ is true when, $r \le 1$, but not when r > 1. For recall that A is (C^*, r) . It follows from the results of a paper by Kuttner [4] that $(C^*, r) \Rightarrow (C, 1)$ when $r \le 1$; and it is well known that (C, 1) implies (17). On the other hand, if r > 1, let $1 \le \beta < \alpha < r$, and $s_k = (-1)^k (k+1)^{\beta}$. Then (s_k) is summable (C, α) , and hence summable (C^*, r) [4]. But (17) is false. Indeed, (16) does not converge, so that b_n is not defined.

REFERENCES

- 1. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.
- 2. M. S. Ramanujan, On Hausdorff and quasi-Hausdorff methods of summability, Quart. J. of Math. Oxford Ser. (2) 8 (1957), 197-213.
- 3. ——, Series-to-series quasi-Hausdorff transformation, J. Indian Math. Soc. 17 (1953), 47-53.
- 4. B. Kuttner, On quasi-Cesáro summability, J. Indian Math. Soc. 24 (1960), 319-341.

University of Malaya, Kuala Lumpur, Malaysia