
THE FUNCTIONAL EQUATION

Kxy)+fixy-1) = 2fix)f(y) FOR GROUPS

PL. KANNAPPAN

This paper is concerned with the study of the functional equation

(A) fixy) +fixrl) = 2fix)fiy)

where/ is a complex-valued function on a group G, for all x, y in G. On

the line this functional equation is obviously satisfied by the cosine

function and may be called the cosine equation. Of course this equa-

tion has a meaning on any group. One obvious way to solve the func-

tional equation (A) on any group is by means of a homomorphism of

G, say g, into the multiplicative group of nonzero complex numbers,

K. If g is such a homomorphism, then the function defined by

six) + g*ix)
(B) f{x) = —-=_L1,    for all x in G,

where g*ix) =gix)~1, is a solution of the equation (A), as can be seen

by an easy calculation.

For G = R, the equation (A) is classical, and its continuous solutions

are known to be of the form (B) with the continuous g. Recently

T. M. Flett [l] found the continuous solutions of (A) on R2 to be of

the form (B), a result extended by the writer to Rn, n any positive

integer [3]. The question naturally arises as to whether or not all

solutions of the equation (A) on an arbitrary group have the form (B).

In this paper, it is shown that the answer is in the affirmative for

Abelian groups and, with a certain restriction, for non-Abelian

groups. Furthermore, if / is a continuous solution of (A) on a topo-

logical group G, then the corresponding homomorphism g is also con-

tinuous. We are indebted to Professor Edwin Hewitt for drawing our

attention to the equation (A) and its solutions of the form (B) and for

his guidance to the preparations of this paper and to Professor

Richard S. Pierce for showing us the greatly simplified versions of our

original proofs of Theorems 1 and 2. We are also thankful to the

referee for showing us a simplified proof of Theorem 3.

1. Theorem 1. Let G be a topological group iAbelian or not) and let

f be a complex-valued, continuous function defined on G. Further, let g be

a homomorphism of G into K such that fix) = (g(x) + g* ix)) /2, for every

x in G. Then g is also continuous.
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Proof. By hypothesis,

g(xy) + g*(xy)
/(xy) = -,    for all x, y m G

= g(*)g(y) + g*0«)g*(y)
2

and

^/ sr/ n      «(*) + S*(x) g(y) + g*(y)
f(*)f(y) = ——-

= i\g(*)g(y) + g(x)g*(y) + g*(x)g(y) + g*(x)g*(y)\,

and so

,,   s      ,, v,, v      g(*)s(;y) + S*(^)g*(3') - g(x)g*(y) - g*(x)g(y)
/(xy) -/(x)f(y) =-

4
1.1)

_ g(x) - g*(x) g(y) - g*(y)

2 2

But,

.. N    g(.x) + g*M
,(*)  =-,

and hence

g(x) — e*(x)

(1.2) g(*) -/(*)='   2" •

From (1.1) and (1.2), we obtain

(1.3) /(xy) - /(x)/(y) = [g(x) - f(x)} [g(y) - /(y) ].

Case I. Suppose that g(x) =/(x), for every x in G. Then obviously,

g is continuous.

Case II. Otherwise, there is an Xo in G such that o=g(xo) —/(x0)^0.

With Xo for y in (1.3), we get

(1.4) g(x) = /(x) + 1/5 [/(**„) - /(*)/(*») ] •

From (1.4), it follows that, if/ is continuous, then so is g. This com-

pletes the proof of the theorem.

2. From now on, let G be an arbitrary group and let/ be a com-

plex-valued function satisfying (A) on G, not identically zero and

such that
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(C) fi^yz) = fixzy),   for every x, y, z in G.

We start with some preliminaries which are needed in the sequel. To

begin with put y = e in (A), where e is the identity of G. Then we have

fix) + fix) = 2fix)fie)

and so

(2.1) fie) = 1.

Now setting x = e in  (A), we obtain fiy)+fiy~1)=2fie)fiy), from

which it follows immediately that,

(2.2) /(y-1) = f(j),    for every y E G.

Putting y=x in (A), we get

(2.3) fix2) + 1 = 2/2(x),    for all x E G.

We now replace x by xy and y by xy~l in (A). Then by using (C), we

obtain that

2fixy)fixy~1) = fixyxy~x) + fixyyxr1)

(2.4) = fixyy-^x) + fixx-Y)

= fi*2)+fiy2)-

Now using (A), (2.3) and (2.4), we find that

[fixy) - fixy-i)}2 = [/(xy) + /(*y-1)]2 - 4/foO/for1)

= 4/W(y)-2[/(*2)+/(y)]

(2.5) = Af2ix)f2iy) - 2[2pix) - 1 + 2/2(y) - l]

= 4[/2(x)/2(y) -fix) -fiy) + l]

= i[pix) - l][f2iy) - 1].

Consequently we obtain from (2.5), that

(2.6) fixy) -fixy1) = 2([/2(*) - l][/2(y) - l])"2,

where the square root is unknown. Adding (2.6) and (A), it is easy to

see that

(2.7) fixy) = fix)f(y) + ([/»(*) - l][f(y) - l})*'2,

where again the square root is unknown. From (2.7), we have

(2.8) [fixy) -fix)fiy)]2 = [/»(*) - l][piy) - l].

3. Lemma 1. Let G be any group. Let f be a function on G with the
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properties that (1) / satisfies (A) on G, (2) /(x) assumes the values +1

only on G, and (3)/ satisfies (C) on G. Then/ has the/orm (B).

Proof. Since/2(x) = 1 for all x£G, (2.7) shows that / is a homo-

morphism. We also note that/*(x) =/(x) for all x in G. Thus clearly

/(x) = (/(x)+/*(x))/2. This proves the lemma.

4. Theorem 2. Let G be an arbitrary group. Then every solution o/

(A) on G satisfying (C) has the/orm (B).

Proof. Let/ be a solution of (A) satisfying (C) on G. Lemma 1 is

the present theorem if /(G) E {l, — 1} • Suppose that there is an x0 in

G such that

(4.1) f(xo) * 1.

Leta=/(x0) and /3 be a square root of (a2 —1). That is,

(4.2) a2 - 1 = 02.

We now define

g(x) = f(x) + l/3[f(xx0) - f(x)f(xo)},        for all * E G

= l//?[/(**o) + OS - a)f(x)].

Then g is well defined on G. Further, utilizing (2.3), (4.2) and (4.3),

we have

[g(x) -f(x)]2 = 1/P2[f(xx0) -f(x)f(xo)\2

= l/t3*[f(x) - l][f2(x0) - lj

= (a2 - l)/02[/2(x) - 1]

= f2(x) - 1.

Therefore, we obtain

(4.4) g2(x) - 2g(x)f(x) + 1 = 0.

From (4.4) we conclude that g(x) ^ 0 and moreover f(x)

= (g(x)+g*(x))/2 for every x in G. It remains only to prove that g

defined by (4.3) is a homomorphism; that is, g(xy)=g(x)g(y), for

every x, y in G. With the help of (A) and (C), we obtain

2[f(xox)f(y) +f(x0y)f(x)] = f(x0xy) + {(xoxy-1) + /(x0yx) + /(xoyx'1)

= f(xoxy) + /(xoxy-1) + /(x0xy) + /(xoyx'1)

(4.5) = 2/(xaxy) + /(xoxy-1) + /(xoyxr1)

= 2/(*0xy) + 2/(x0)/(xy-1)

= 2[/(Vy) + «{2/(*)/(y) -/(«y)}j.



i968] THE FUNCTIONAL EQUATION FOR GROUPS 73

Again using (A) and (C), we get

2fixox)fix0y) = fixoxxoy) + fixoxy-^xo1)

= fixoXoyx) + fixoXo^xy-1)

= fixoyx) + fixy-1)

(4.6) = fixlxy) + fixy-1)

= [2fixo)fix0xy) -fixoxyxo1)} + [2f(x)f(y) -fixy)]

= [2fixo)fix0xy) -fixy)] + \2f(x)f(y) -fixy)]

= 2[fix)fiy) + fixo)fix0xy) -fixy)].

In view of (4.3), (4.5), (4.6) and (4.2), we obtain

gix)giy) = l//S2[/(*„x) + ifi ~ a)fix)][fixoy) + (fi - a)f(y)}

= l/p2[fixox)fix0y) + (fi- a){fix)fixoy) + /(y)/(*o*)}

+ (fi - a)2f(x)fiy)]

= 1/P2[fix)fiy) + afixoxy) -fixy)

+ (fi- a){f(x0xy) + 2afix)fiy) - afixy)} + (fi - a)2/(rv)/(y)]

= l/,82[{ 03 - a)2 + 2ai0 - a) + l}f(x)f(y) + flfixoxy)

- {l + 08-«)«}/(*y)]

= l//32[(/32 - a2 + l)f(x)fiy) + fifixvxy) - (fict - P2)fixy)}

= l/p2\fifixoXy) + /9(/S - a)f(xy)]

= 1/P[(fi - a)f(xy) + fixoxy)]

= gixy).

The proof of the theorem is thus complete.

For topological groups we have the following important corollary.

Corollary 1. Let G be a topological group and let f be a continuous

solution of (A) on G satisfying (C). Then f is of the form (B), where gis a

continuous homomorphism of G into K.

The proof is immediate from Theorems 1 and 2.

Remark 1. In Corollary 1, suppose that G is locally compact and

that/ is (Haar) measurable. Then from (4.3), we see that g is also

measurable. But since g is a measurable homomorphism, g is continu-

ous. Hence / is continuous. Therefore every measurable solution of

(A) is continuous.

Finally, we observe the following.

5. Theorem 3. Let igiix)+gi*ix))/2 = ig2ix)+g2*ix))/2, for every
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x in G, where gi and g2 are homomorphisms 0/ G into K. Then either

gi=gior g2 = gi*.

Proof. It is easy to see that

(5.1) [gi(x)gl(x) - l][gi(x)g2(x) - 1] = 0        (x E G).

The sets Gi and gG2 on which the factors in (5.1) vanish are sub-

groups, since they are kernels of the homomorphisms gig2* and gig2.

From (5.1), G^JG2 = G. But a group is never the union of two sub-

groups for, if X1EG1 and x2EG2, then one of xi, x2, xix2 is not in GiUG2.

Therefore Gi = G or G2 = G that is, g2 — gi or g2 = gi*. This proves the

present theorem.

Our Theorem (2) permits us to compute in detail all continuous

solutions of (A) on an arbitrary locally compact Abelian group G. The

homomorphisms g of (B) all have the form xexp^), where x is a con-

tinuous character of G and ^ is a continuous real character of G (in the

sense of [2, p. 389]). The group G has the form R"xGo, where Go con-

tains a compact subgroup (open) J0, where n is any positive integer

[2, p. 389]. The form of \p on Rn is obvious, and yp is identically zero on

every element of G some power of which lies in J0. Otherwise \{/ on G0 is

easily described by a Zorn's Lemma argument, since the image group

R of ^1/ is divisible.
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