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1. A symmetric kernel G is said to symmetrize the kernel K by

composition on the left in case the product GK is symmetric — i.e.

in case GK = KTG. It follows at once that, if G is a left symmetrizer

of K, so are GK, GK2, GK3, etc., and that the linear manifold spanned

by these kernels consists entirely of left symmetrizers of K. It also

follows that G-1, when it exists, satisfies KG~1 = G-1KT, so that the

inverse of G is to be sought among the right symmetrizers of K.

The integral equations of first kind of classical potential theory,

namely

(1) f(P) =   f G(pq),x(q)dSq,
J s

(2) g(p) =   f D(pq)p(q)dSt

arise when the solution of the Dirichlet problem with respect to a

surface 5 is sought in the form of the potential V[p,] of a surface dis-

tribution on 5 of density pt, and the sblution of the Neumann problem

is sought in the form of the potential W[v] of a double layer on 5 of

moment v. In this notation, G(p, q) = l/(2irrpq) is the potential at

p(q) of a unit mass at q(p), and is symmetric, while D(p, q)

= (d2/dnpdnq)G(pq) represents the normal component of force at p(q)

due to a unit normal dipole at q(p) and is likewise symmetric. The

given boundary values relevant to the (interior or exterior) Dirichlet

and Neumann problems are/(p) and g(p), respectively.

In this paper, the concepts of the first paragraph above are applied

to the solution of the equations (1) and (2) in the case of a closed,

bounded surface 5 of class B [ll, p. 186]. For, it is known [19,

§4, p. 344] that G is a left symmetrizer of the kernel

2
K(p, q) = (d/dnp)G(p, q) = cos(r, np) / (2irrpq)

of the Fredholm-Poincare integral equations. It will be shown that

D(p, q) = [cos(wP, nq) + 3 cos(«j„ r) cos(nq, r)]/(2irrpq)
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is a right symmetrizer of K and that DG = K2 — I so that, in effect

G-1=-[£>+2C22)+.fi:42)+ • • • ], D~1 = -[G+GK2+GKi+ • • • 1

and the integral equations (1) and (2) are equivalent, respectively, to

(3) K2u-n = Df,

(4) iK*)2v -v = Gg.

Analogous results may be obtained in the plane.

The problem represented by the integral equation (1) has been dis-

cussed by Liapounoff [lO] who showed that, when / is such that

W\f] admits a regular normal derivative on S, it may be written

f=Gp.. The density p. is obtained as the difference of the solutions of

two integral equations, formulated with respect to the regions interior

and exterior to S, respectively. For general/ he showed that the third

and succeeding terms of the Neumann series solution of the Dirichlet

problem with boundary values/could be written as the potential of a

single layer but, in general, the first two terms could not. Similar

results were obtained by E. R. Neumann [14] who, in addition,

obtained the solution of the Neumann problem in the form of a

double layer potential [14, pp. 43-66]—i.e. solved the integral equa-

tion (2). Bertrand [l] converted the equation (1), in the two-dimen-

sional case, to an equation of second kind by differentiation while

Plume [2l] has given a similar treatment of the Neumann problem.

Picard [17], [18], in a well-known paper, has given necessary and

sufficient conditions, applicable in the two-dimensional case, that (1)

admit a square-integrable solution, and has worked out the case of a

circle. These methods have been extended to the three-dimensional

case by Fenyo [3], who illustrates his results in the case of a sphere.

Blumer [2] converts (1), in the three-dimensional case, to each of

three integral equations of second kind by a complicated process

based upon integro-differential operators analogous to those of

M. Riesz. Thus it appears that the symmetrizing property of D and

the equivalence of (1) and (2) with equations of second kind with

kernels K2 and (2Cr)2 are new results. The following development,

however, owes much to the work of Liapounoff [8], [°], [lO].

2. A function V(P) harmonic in the region R interior, or R' exte-

rior, to 5 is said to possess a regular normal derivative on 5 [9, §2,

p. 246, §16, p. 285] in case limP„peSidV/dn)iP) is taken uniformly

on 5 as P—>p along the normal to 5 at p. (The normal n is defined

throughout as the interior normal to S, and determines the positive

(interior) and negative (exterior) sides of 5. See, e.g. equations (6)
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and (8).) These limiting values then define a continuous function

on S. Tauber [22], [23] (see also Liapounoff [8, p. 131]) has shown

that the difference of the derivatives of a double layer potential

H^[j>], with continuous moment v on 5, in the normal direction at

points on the normal on opposite sides and equidistant from S, van-

ishes as these points approach S, and hence that, if W[v] admits a

regular normal derivative on one side of S, it does so on the other

side, and the limiting values of the normal derivatives are equal.

Gunther [6, p. 70] has quoted an example of a surface S and continu-

ous function v such that W[v] does not admit a regular normal deriva-

tive. Analytic conditions sufficient for the existence of a regular nor-

mal derivative Dv of W[v] have been formulated by C. Neumann

[12, p. 413], [13, p. 436], Liapounoff [8, p. 132], [9, §20, p. 293 et
seq.], and Kellogg [7, p. 42 et seq.] while complicated necessary and

sufficient conditions have been established by Petrini [15, p. 320],

[16, p. 212]. Liapounoff [9, §19, p. 293] has characterized the domain

of D by showing that, for continuous v, W[v] admits a regular normal

derivative on 5 when, and only when, the solution of the Dirichlet

problem with respect to R, determined by the boundary values v,

also admits a regular normal derivative on 5.

Liapounoff [9, §§15, 16] (see also Plemelj [20, §4, p. 9]) has estab-

lished the following extension of Green's third identity:

Lemma. Suppose that V(P) is harmonic in R and admits a regular

normal derivative on S. Then, when PER,

(5) x(P) = hW[V] - MdV/dn] = V(P)

and, when PER', x(P) =0.

It follows at once from (5), together with the formulae

(6) W |+ = v + KTv,        W |_ = - v + KTv,

describing the discontinuity in W[v] across S, that, on S,

(7) V = KTV - G(dV/dn).

Moreover, if it is assumed that PF[F] admits a regular normal deriva-

tive on S, it follows from (5) and the formulae

(8) (dV/dn) \+ = - m + Kpt,       (dV/dn) |_ = M + Kn

describing the discontinuity in the normal derivative of V[n] across

5 that, on 5,

(9) dV/dn = DV - K(dV/dn).
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The formulae (7) and (9) may be interpreted as integral equations

connecting the limiting values V and dV/dn on S. It is important to

observe that (7) is the Neumann-Poincare integral equation in the

case X= +1, corresponding to the exterior Dirichlet problem, while

(9) is the Robin-Poincare integral equation in the case X=—1, cor-

responding to the exterior Neumann problem. The questions of

existence and uniqueness of solutions of these equations have been

discussed in detail by Plemelj [19, §16, p. 383 etseq.]. In particular, it

is known that X= — 1 is not an eigenvalue of K and that (9) possesses

an unique, continuous solution for any nonhomogeneous term D V.

3. The characteristic properties of G and D now follow at once.

For, whenever p. is continuous on S, substitution from the first of

equations (8) into (7) is permissible and leads directly to the formula

(see also Plemelj, loc. cit.)

(10) GKu = KTGu.

Similarly, since V[pt] admits a regular normal derivative on S, so

does W[F], and substitution from the first of equations (8) into (9)

is also permissible, to obtain

(11) DG,x = K2u - n.

When v is continuous on S, W[v] may be represented in R as the

sum W[»»] = ViiP) + V2iP) of two harmonic functions characterized

by the boundary values v and KTv on S, respectively. When W[v]

admits a regular normal derivative on S, so does ViiP), whence

ViiP) does also, and so PF[2£7V] does also. Thus D and DKTv both

exist, and Div+KTv) =Dv+DKTv. Substituting, then, from the first

of equations (6) into (9), and applying this relation, the formula

(12) DKTv = KDv

is obtained. Similar substitution into (7) leads to

(13) GDv = iKT)2v - v.

4. It is well known (Plemelj, loc. cit. §2) that X= +1 is an eigen-

value of the kernel K of the Fredholm-Poincare integral equations,

and that, correspondingly, the homogeneous equations KTvi — vi = Q,

Kui — p.i = 0 each admit a single eigenfunction. The eigenfunction vi

is constant, while ui represents the equilibrium distribution of charge

on 5. It follows from (10) that, with appropriate normalization,

vi = Gui. On the other hand, since pi is continuous, V[pi] has a regular

normal derivative on 5 whence, U/[F] = PF^i] has also. However,

Dvi = 0^fii.
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The identities K2p-p = Kp-p+K(Kp-p) and (KT)2v-v = KTv

— v-\-KT(KTv — v), together with the fact that X= —1 is not an eigen-

value of K or KT, show that m and vi are also the only eigenfunctions

of K2 and (KT)2 respectively. Thus, it follows from (13) that Dp = 0

implies v = constant.

These remarks, together with Fredholm's third theorem, show that

the integral equations (3) and (4) admit solutions when, and only

when, /D/dS = 0 and /gGpidS = 0, respectively; and that these solu-

tions are not unique but contain an added arbitrary multiple of the

corresponding eigenfunction.

5. Theorem 1. A necessary and sufficient condition that the integral

equation (1) shall admit an unique continuous solution p, for any given

continuous /unction / is that / lie in the domain of D. When this is the

case, p. satisfies the equation (3).

Proof. 1. When p. is a continuous solution of (1), V[p] admits a

regular normal derivative on 5 and, thus, so does W[f]. From (8)and

(9) it follows that /u satisfies (3).

2. When Df exists, equation (3) may be formulated and, since

fsDfdS = 0 this equation admits a continuous solution ju =/i0 + C/-H-

For each such solution it follows from (1) that DGp = Df, whence

Gp,— f = Gpo-\-CGpi— f is constant on 5. But Gpi = vi is itself constant,

thus C may be uniquely chosen such that (1) is satisfied.        Q.E.D.

Theorem 2. A necessary and sufficient condition that the integral

equation (2) shall admit a continuous solution v, unique to within an

additive constant, for any given continuous function g, is

(14) f gdS = 0.
J s

When this is the case, v satisfies the equation (4) or, alternatively, v = Gp

where p satisfies the equation (3) with D/ replaced with g.

Proof. 1. When p0 satisfies (2), so that Dv0 = g = d/dnW[v0] then

g satisfies (14). Moreover, from (13), GDp0 = Gg = (KT)2v0 — Vo, whence

po satisfies (4). Since v0 lies in the domain of D, p0 = Gp for some con-

tinuous p., and p. satisfies (3) with D/ replaced with g, by Theorem 1.

These same conclusions are clearly valid for v = v0 + Cvi, which also

satisfies (2).

2. Given a continuous function g satisfying (14), it follows that

/piGgdS = /pigdS = vi/gdS = 0, whence (4) possesses a continuous solu-

tion p = v0 + Cpi. Similarly (3) with D/ replaced with g possesses a

continuous solution p. = p,o-\-Cp.i, whence Gfj. = Gpo + CGpi = Gn0 + Cvi



6 J. L. HOWLAND [February

and it follows from (10) that v = Gp and that every solution of (4)

has this form. Thus, W[v] has a regular normal derivative on S, and

from (13) it follows that GDv = Gf, whence Dv=f. Q.E.D.

Since IF^i] is constant in R and zero in R' this theorem is in ac-

cordance with the known fact that the Neumann problem possesses

an unique, regular solution in R', but that the solution is only deter-

mined to within an additive constant in R.

A second integral equation may, in certain circumstances, be

formulated for the Dirichlet problem as follows:

Corollary. Suppose that ffuidS = 0. Then, the solution p. of (1)

and (3) may be written u = Dv where v is a continuous solution of (4)

with Gg replaced with f.

Proof. 1. When u satisfies (1), 0 = fuifdS = JuiGudS = JvipidS
= vifpdS so that, by Theorem 2, Dv=n possesses a continuous solu-

tion v. This function satisfies (4) with Gg replaced with /.

2. Following the arguments of Theorem 2, it is seen that (4), with

Gg replaced with/, possesses continuous solutions v for which W[v]

admits an unique normal derivative on S. From (13), GDv =/ whence

p. = Dv is the solution of (1). Q.E.D.
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